J-PARC KOTO実験における $K_L \rightarrow \pi^0 \nu \overline{\nu}$ 崩壊探索

上路 市訓(京都大学) Flavor Physics Workshop 2018 @ Kavli IPMU 2018年 11月 1日

arXiv:1810.09655 submitted for publication (2018.Oct.23)

Introduction

 $K_L \to \pi^0 \nu \bar{\nu}$ 崩壊

- Direct CP violation
- Flavor Changing Neutral Current
- ・標準模型の分岐比 ~3 x 10⁻¹¹
 - small theoretical uncertainty: ~1%

→ Sensitive to New Physics

 $K_L \to \pi^0 \nu \bar{\nu}$ 崩壊

- Direct CP violation
- Flavor Changing Neutral Current
- ・標準模型の分岐比 ~3 x 10⁻¹¹
 - small theoretical uncertainty: ~1%

→ Sensitive to New Physics

2018/11/1

KOTO実験の軌跡

Analysis Outline

Analysis Outline

Blind Analysis

Background Estimation

Number of Background Events

← MC simulation & control samples

Single Event Sensitivity

 K_L flux

 \leftarrow normalization mode analysis ($K_L \rightarrow 2\pi^0$)

Signal Acceptance

 \leftarrow MC simulation ($K_L \rightarrow \pi^0 \nu \overline{\nu}$)

After fixing all the analysis configuration → *open signal box*

Background Sources

K_L Decays

Background Sources: Hadron Cluster Background

Background Sources: Upstream- π^0 Background

上流の veto 検出器で halo neutron が π^0 を生成 halo neutron K_L 2γ NCC [500 450 450 400 € 350 2.4Simulation 2.2 2 1.8 preliminary 1.6 ن کی 300 کی 1.4 250 1.2).04±0.03 200 1 0.8 150 0.6 100 0.4 50 331.5±13.0 0.2 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 Rec. π^0 Z [mm]

Background になる理由 ☆ small visible energy on calorimeter (photo-nuclear interaction) ☆ "γ + n" cluster pair

-> vertex の再構成を間違える

13

Background Sources: CV-η Background

実験感度の算出: Single Event Sensitivity

$\bigstar K_L$ Flux Measurement

$\frac{10^{3}}{10^{4}} = \frac{10^{4}}{10^{4}} = \frac{10$

🛠 Signal Acceptance

2018/11/1

Result of 2015 Data Analysis

Summary of Physics Data Reduction

Selection Criteria	number of remaining events
triggered events kine	matical selection 4.31 x 10 ⁹
two-cluster	8.74 x 10 ⁸
trigger-related cuts	2.50 x 10 ⁸
photon selection cuts	1.75 x 10 ⁸
kinematic cuts	3.59 x 10 ⁷
veto cuts	3.83 x 10 ⁴
shape-related cuts	347

further BG suppression

Summary of Background Estimation

Summary

KOTO実験 2015年データ解析結果
BR(K_L → π⁰νν) < 3.0 x 10⁻⁹ (90% C.L.)
先行実験 (KEKPS E391a) が記録した上限値を1桁更新

Search for the $K_L \rightarrow \pi^0 \nu \overline{\nu}$ and $K_L \rightarrow \pi^0 X^0$ decays at the J-PARC KOTO experiment

J. K. Ahn,¹ B. Beckford,² J. Beechert,² K. Bryant,² M. Campbell,² S. H. Chen,³ J. Comfort,⁴ K. Dona,² N. Hara,⁵ H. Haraguchi,⁵ Y. B. Hsiung,³ M. Hutcheson,² T. Inagaki,⁶ I. Kamiji,⁷ N. Kawasaki,⁷ E. J. Kim,⁸ J. L. Kim,^{1,*} Y. J. Kim,⁹ J. W. Ko,⁹ T. K. Komatsubara,^{6,10} K. Kotera,⁵ A. S. Kurilin,^{11,†} J. W. Lee,^{5,‡} G. Y. Lim,^{6,10} C. Lin,³ Q. Lin,¹² Y. Luo,¹² J. Ma,¹² Y. Maeda,^{7,§} T. Mari,⁵ T. Masuda,^{7,¶} T. Matsumura,¹³ D. Mcfarland,⁴ N. McNeal,² J. Micallef,² K. Miyazaki,⁵ R. Murayama,^{5,**} D. Naito,^{7,**} K. Nakagiri,⁷ H. Nanjo,^{7,††} H. Nishimiya,⁵ T. Nomura,^{6,10} M. Ohsugi,⁵ H. Okuno,⁶ M. Sasaki,¹⁴ N. Sasao,¹⁵ K. Sato,^{5,‡‡} T. Sato,⁶ Y. Sato,⁵ H. Schamis,² S. Seki,⁷ N. Shimizu,⁵ T. Shimogawa,^{16,**} T. Shinkawa,¹³ S. Shinohara,⁷ K. Shiomi,^{6,10} S. Su,² Y. Sugiyama,^{5,**} S. Suzuki,¹⁶ Y. Tajima,¹⁴ M. Taylor,² M. Tecchio,² M. Togawa,^{5,**} Y. C. Tung,¹² Y. W. Wah,¹² H. Watanabe,^{6,10} J. K. Woo,⁹ T. Yamanaka,⁵ and H. Y. Yoshida¹⁴

(The KOTO Collaboration)

¹Department of Physics, Korea University, Seoul 02841, Republic of Korea ²Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA ³Department of Physics, National Taiwan University, Taipei, Taiwan 10617, Republic of China ⁴Department of Physics, Arizona State University, Tempe, AZ 85287, USA ⁵Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan ⁶Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan ⁷Department of Physics, Kyoto University, Kyoto 606-8502, Japan ⁸Division of Science Education, Chonbuk National University, Jeonju 54896, Republic of Korea ⁹Department of Physics, Jeju National University, Jeju 63243, Republic of Korea ¹⁰ J-PARC Center, Tokai, Ibaraki 319-1195, Japan ¹¹Laboratory of Nuclear Problems, Joint Institute for Nuclear Researches, Dubna, Moscow reg. 141980, Russia ¹²Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA ¹³Department of Applied Physics, National Defense Academy, Kanagawa 239-8686, Japan ¹⁴Department of Physics, Yamagata University, Yamagata 990-8560, Japan ¹⁵Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan ¹⁶Department of Physics, Saga University, Saga 840-8502, Japan

(Dated: October 24, 2018)

A search for the rare decay $K_L \to \pi^0 \nu \overline{\nu}$ was performed. With the data collected in 2015, corresponding to 2.2×10^{19} protons on target, a single event sensitivity of $(1.30\pm0.01_{\text{stat}}\pm0.14_{\text{syst}}) \times 10^{-9}$ was achieved and no candidate events were observed. We set an upper limit of 3.0×10^{-9} for the branching fraction of $K_L \to \pi^0 \nu \overline{\nu}$ at the 90% confidence level (C.L.), which improved the previous limit by almost an order of magnitude. An upper limit for $K_L \to \pi^0 X^0$ was also set as 2.4×10^{-9} at the 90% C.L., where X^0 is an invisible boson with a mass of 135 MeV/c².

PACS numbers: 13.20.Eb, 11.30.Er, 12.15.Hh

Introduction. The $K_L \to \pi^0 \nu \bar{\nu}$ decay is a CP-violating process and is highly suppressed in the Standard Model (SM) due to the $s \to d$ flavor-changing neutral current transition [1, 2]. The branching fraction for this decay can be accurately calculated, and is one of the most sensitive proper to search for new physics beyond the SM (con where X^0 is an invisible light boson. The upper limit for this decay was set, for the first time in [19], as 3.7×10^{-8} (90% C.L.) for the X^0 mass of 135 MeV/c².

Experimental methods and apparatus. A 30-GeV proton beam extracted from the J-PARC Main Ring with

2018/11/1