g-2 with Variant Axion Models

Michihisa Takeuchi (Kavli IPMU, Univ. of Tokyo)

based on arxiv:1807.00593 (and JHEP11(2015)057 [arXiv:1507.04354],PhysRevD.97.035015 [arXiv:1711.02993])

World Premier International Research Center Initiative

No signature of BSM yet

No evidence of SUSY anywhere yet: Higgs measurements, DM Direct-Detection, ...

SUSY dead? I personally think still attractive as a solution of the big hierarchy problem (don't confuse with 'little hierarchy') attractive points:

natural WIMP DM, solve big hierarchy problem ~ $O(10^{-26})$ to $O(10^{-4})$, coupling unification, ...

Another fine tuning problem in the SM : strong CP problem – Why $\theta_{\text{eff}} < 10^{-11}$? $\mathcal{L}_{\theta} = \frac{\theta}{32\pi^2} G^a_{\mu\nu} \tilde{G}^{a,\mu\nu}$

Attractive solution : PQ mechanism \Rightarrow Axion : good DM candidate

similarly attractive and don't require new particles : naturally explain the current situation

Strong CP problem

QCD Lagrangian contains the total derivative term: θ -term

Furthermore, chiral tr. $q \rightarrow e^{i\alpha\gamma_5}q$ induces $\theta \rightarrow \theta - 2\alpha$

massive fermion mass term is also changed.

$$\begin{aligned} \theta_{\text{eff}} &= \theta + \arg \det[M^u M^d] \\ &\propto \arg \det[v^6 Y^u Y^d] \end{aligned} \text{ is invariant under the chiral tr.} \end{aligned}$$

 θ_{eff} can be measured from Neutron EDM $|d_n| = 4.5 \times 10^{-15} \theta_{\text{eff}} e \text{cm}$

$$|d_n^{\rm obs}| < 2.9 \times 10^{-26} e {\rm cm}$$

Why $\theta_{\text{eff}} < 10^{-11}$? while the origin of θ and arg M is completely different Fine tuning problem

Peccei-Quinn mechanism and domain wall problem

[R. D. Peccei, H. R. Quinn, PhysRevLett.38.1440]

If the theory has $U(1)_{PQ}$, which spontaneously breakdowns to provide axion, at η .

Due to the anomaly, U(1)_{PQ} current is not conserved, $\partial^{\mu} j^{PQ}_{\mu} = -\frac{g^2}{32\pi^2} A G^{a\mu\nu} \tilde{G}^a_{\mu\nu}$, $\frac{a}{\eta} \rightarrow \frac{a}{\eta} + \epsilon$ induces $\delta \mathcal{L} = -\frac{g^2}{32\pi^2} \epsilon A G^{a\mu\nu} \tilde{G}^a_{\mu\nu}$, induce the potential in the effective Lagrangian $\mathcal{L}_{\text{eff}} = -\frac{1}{4} G^{a\mu\nu} G^a_{\mu\nu} - \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{g^2}{32\pi^2} \frac{a}{F_a} G^{a\mu\nu} \tilde{G}^a_{\mu\nu} - \frac{\bar{\theta}g^2}{32\pi^2} G^{a\mu\nu} \tilde{G}^a_{\mu\nu}$ $F_a = \eta/A$ A depends on the model (~ N)

at low temperature, QCD instanton effects give an axion a potential and minimizing it gives $\langle a \rangle = -\bar{\theta}F_a$.

Variant Axion model

$$\overline{\theta} = \theta_{\text{strong}} + \theta_{\text{EM}}$$
in theta space
$$\frac{1 - \cos(\frac{a}{F_a} + \overline{\theta})}{2\pi F_a - 4\pi F_a} \quad a' \equiv a + \overline{\theta} F_a$$

$$\theta_{\text{eff}} = \overline{\theta} + \frac{\langle a \rangle}{F_a} = \frac{\langle a' \rangle}{F_a} = 2n\pi(n = 1, \dots, N)$$

$$N_{\text{DW}} = N_{\text{PQ}} \quad [\text{C.Q. Geng, J. N. Ng, PhysRevD.41.3848]}$$
in the table of table of

 $N_{\rm PQ} = 1$ is free from the domain wall problem [R.D. Peccei, T.T. Wu and T. Yanagida, Phys. Lett. B172, 435 (1986)] [C-R Chen, P. Frampton, F. Takahashi, T. T. Yanagida JHEP1006(2010)059]

Strong CP problem

PQ solution with axion

very attractive, provide good DM candidate timely: rapid progress of axion DM searches

invisible axion models

$$\mathsf{KSVZ} \qquad N_{DM} = 1$$

heavy Q introduced no problem but no low energy phenomenology (not interesting)

(Kim 1979, Shifman, Vainshtein, Zakharov 1980)

$$\begin{array}{ll} {\sf ZDFS} & N_{DM}=6 & \Phi_1^\dagger \Phi_2 \sigma^2 \\ & \mbox{(Zhitnitsky1980, Dine, Fischler, Srednicki 1981)} & N_{DM}=3 & m \Phi_1^\dagger \Phi_2 \sigma \end{array}$$

 $N_{DM} = 1$

 $\mathcal{L}_Q = -y_Q \bar{Q}_L \Phi Q_R + \text{h.c.}$

two Higgs doublet model,

no new fermion necessary introduced can discuss low energy phenomenology

but suffer from Domain wall problem

only 1 quark coupled to PQ-Higgs domain wall problem absent

up-type specific Variant Axion model

σ field integrated out, the effective theory is just a 2HDM

	Φ_1	Φ_2	u _R	d_R	ℓ_R	Q_L, L	L			
Туре-І	+	_	_	_	_	+	_	two Higgs easily results in FCNC. Usually people impose 72 sym to avoid FCNC		
Type-II	+	_	-	+	+	+				
Type-X	+	_	-	_	+	+		Obtailly people impose 22 sym. to avoid 1 erve.		
Type-Y	+	-	-	+	-	+	-			
Model	$\Phi_1 + +$	Φ_2	t_R - +	$c_R u_R$ + + - +	d_R + +	ℓ_R + +	Q_L + +	L_L to avoid domain wall problem, + we have to assign PQ charge only one + quark.		
Model	+	—	+	+ -	+	+	+	+ when we take up-type VAM, top/charm/up FCNC is the prediction		
top-spec	cific c	ase,						Φ_2 only couple with u_{R3}		
$\overline{u}_{Ra}[Y_{u1}]$	$]_{ai}Q_i$	$-\Phi_2$	$\overline{u}_{R3}[Y]$	$[V_{u2}]_i Q_i$ -	+ h.c.			other quarks only couples with Φ_1		
$ xith \beta $, Y_u	$_2 = \left(\begin{array}{c} \\ \end{array} \right)$	0 0 0	0 *	Ŷ	$u^{\prime,{ m diag}} =$	$\left(-\tan \theta\right)$	$\begin{pmatrix} \tan \beta \\ -\tan \beta \\ \cot \beta \end{pmatrix} Y_u^{\text{diag}} + (\tan \beta + \cot \beta) H_u Y_u^{\text{diag}},$		
is $Y_u^{\mathcal{E}}$	SM, Y	71				$H_u \equiv V$	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$0 1 V^{\dagger} - \begin{pmatrix} 0 & \\ & 0 & \\ & & 1 \end{pmatrix} \rightarrow \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 - \cos \rho & \sin \rho \\ 0 & & & 1 \end{pmatrix}$		
	Type-I Type-II Type-X Type-Y Model Model Model top-spec $\overline{u}_{Ra}[Y_{u1}]$ * * * * * * 0 0 0) with β is Y_{u}^{S}		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $						

g-2 in Lepton-specific 2HDM

muon g-2, long standing 3σ level anomaly $\Delta a_{\mu} = a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} = (262 \pm 85) \times 10^{-11}$ order 10^{-9} positive deviation

lepton-specific (type-X) 2HDM with light A is known as a solution

$$\begin{split} \Delta a_{\mu}^{\text{VAM},1-\text{loop}} &= \frac{G_F m_{\mu}^2}{4\sqrt{2}\pi^2} \sum_{i}^{h,H,A,H^{\pm}} (\xi_{\mu\mu}^i)^2 r_{\mu}^i f_i(r_{\mu}^i) \\ \Delta a_{\mu}^{\text{VAM},\text{BZ}} &= \frac{G_F m_{\mu}^2}{4\sqrt{2}\pi^2} \frac{\alpha_{\text{em}}}{\pi} \sum_{i}^{h,H,A} \sum_{f}^{t,b,c,\tau} N_f^c Q_f^2 \xi_{\mu\mu}^i \xi_{ff}^i r_f^i g_i(r_f^i) \end{split}$$

2100p can dominates by large yukawa compared with y_{μ}

In lepton-specific 2HDM model, $tan\beta$ enhanced tau contribution is crucial.

mA ~ 30GeV and tan β ~ 40 will give a enough contribution -> require large tan β

It is known that LHC constraints are weak as all quark couplings to heavier bosons are suppressed.

W -> H+ A, Z -> A H etc, and Z -> tau tau A, would be the dominant production we can constrain

VAM is essentially just a 2HDM with various PQ charge assignments (only one q_R PQ charged) lepton sector is irrelevant to the strong CP problem nor domain wall problem lepton yukawa has to be enhanced to accommodate muon g-2 \Leftrightarrow corresponding VEV is small (tan β >>1)

e
$$\Phi_1(PQ = +1)$$
 u_R, d_R
 μ c_R, s_R
 τ $\Phi_2(PQ = 0)$ t_R, b_R

VAM is essentially just a 2HDM with various PQ charge assignments (only one q_R PQ charged) lepton sector is irrelevant to the strong CP problem nor domain wall problem lepton yukawa has to be enhanced to accommodate muon g-2 \Leftrightarrow corresponding VEV is small (tan β >>1)

VAM is essentially just a 2HDM with various PQ charge assignments (only one q_R PQ charged) lepton sector is irrelevant to the strong CP problem nor domain wall problem lepton yukawa has to be enhanced to accommodate muon g-2 \Leftrightarrow corresponding VEV is small (tan β >>1)

VAM is essentially just a 2HDM with various PQ charge assignments (only one q_R PQ charged) lepton sector is irrelevant to the strong CP problem nor domain wall problem

lepton yukawa has to be enhanced to accommodate muon g-2 \Leftrightarrow corresponding VEV is small (tan β >>1)

the 3rd gen. part becomes identical to the type II 2HDM -> very constrained by LHC via bbA production also by Bs→µµ

VAM is essentially just a 2HDM with various PQ charge assignments (only one q_R PQ charged)

lepton sector is irrelevant to the strong CP problem nor domain wall problem

lepton yukawa has to be enhanced to accommodate muon g-2 \Leftrightarrow corresponding VEV is small (tan β >>1)

VAM is essentially just a 2HDM with various PQ charge assignments (only one q_R PQ charged)

lepton sector is irrelevant to the strong CP problem nor domain wall problem

lepton yukawa has to be enhanced to accommodate muon g-2 \Leftrightarrow corresponding VEV is small (tan β >>1)

VAM is essentially just a 2HDM with various PQ charge assignments (only one q_R PQ charged)

lepton sector is irrelevant to the strong CP problem nor domain wall problem

lepton yukawa has to be enhanced to accommodate muon g-2 \Leftrightarrow corresponding VEV is small (tan β >>1)

VAM is essentially just a 2HDM with various PQ charge assignments (only one q_R PQ charged)

lepton sector is irrelevant to the strong CP problem nor domain wall problem

lepton yukawa has to be enhanced to accommodate muon g-2 \Leftrightarrow corresponding VEV is small (tan β >>1)

several choices, but up-specific is most interesting possibility

2-loop $\approx 1/m^2 \Rightarrow mA \sim 15$ GeV gives $4x10^3$ enhancement, with $(\tan\beta\sim40)^2$ gives another $2x10^3$ enhancement c: opposite sign, b: disfavored by Bs $\rightarrow\mu\mu$, so τ would be the only possibility \Rightarrow u is only possibility PQ charged

c: opposite sign, b: disfavored by Bs $\rightarrow\mu\mu$, so τ would be the only possibility \Rightarrow u is only possibility PQ charged for muon g-2 introducing mixing doesn't help to accommodate the lepton universality constraints including Bs $\rightarrow\mu\mu$, small mixing $\rho_u = \pi/100$ slightly improves the fit, large mixing is disfavored 9

t -> u A , A -> tautau

even for slight mixing provides large $BR(t \rightarrow uA) \sim O(10\%)$

A decays dominantly to $\tau\tau$ about 100%

LHC searches for bbA, $A \rightarrow \tau \tau$, in the context of MSSM.

CMS searches at 8TeV is the most constraining: using $\mu\tau$, $e\tau$, $e\mu$ modes the kinematics is different between tuA and bbA

- μτ_h channel: exactly one μ and one τ_h with opposite charges: *p*_{T,μ} > 18 GeV, |η_μ| < 2.1 and *p*_{T,τ_h} > 22 GeV, |η_{τ_h}| < 2.3, Δ*R*(μ, τ_h) > 0.5, *M*_T(*p*_{T,μ}, *p*_T) < 30 GeV,

- eτ_h channel: exactly one e and one τ_h with opposite charges: p_{T,e} > 24 GeV, |η_μ| < 2.1 and p_{T,τ_h} > 22 GeV, |η_{τ_h}| < 2.3, ΔR(e, τ_h) > 0.5, M_T(p_{T,e}, p_T) < 30 GeV,
- eµ channel: exactly one µ and one e with the opposite charge: (p_{T,µ} > 18 GeV, p_{T,e} > 10 GeV) or (p_{T,µ} > 10 GeV, p_{T,e} > 20 GeV), |η_µ| < 2.1 and |η_e| < 2.3
 ΔR(e, µ) > 0.5, M_T(p_{T,e} + p_{T,µ}, p_T) < 25 GeV, P_ζ - 1.85P_ζ^{vis} > -40 GeV,

efficiency is in general higher due to $p_{T,\tau}$ cut efficiency quickly goes down due to ΔR cut when $m_A \to 0$

BR(t \rightarrow uA) < 0.2% (mA>25GeV), 10% (mA=15GeV)

boosted A -> tautau

The reason for rapid drop of the efficiency is due to the overlapping τ 's due to the boost

boosted A -> tautau

The reason for rapid drop of the efficiency is due to the overlapping τ 's due to the boost

Flavor violating Heavy higgs decays

For $m_H \gg m_t$ and $\tan \gg 1$, we have

$$\frac{BR(H \to tu)}{BR(H \to \tau\tau)} \sim \frac{m_t^2}{m_\tau^2} \frac{3\sin^2 \rho_u}{2} \simeq (120 \cdot \sin \rho_u)^2$$

the flavor-violating decay $H \to tu$ dominates for $\rho_u \gtrsim 1/120$.

$$\sum_{f,f'}^{u,c,t,d,s,b,e,\mu,\tau} -\frac{m_{f'}}{v} (\xi_{ff'}^{h}h\bar{f}_{R}f'_{L} + \xi_{ff'}^{H}H\bar{f}_{R}f'_{L} + i\xi_{ff'}^{A}A^{0}\bar{f}_{R}f'_{L}) + \text{h.c},$$

$$\xi_{ff'}^{h} \equiv s_{\beta-\alpha}\delta_{ff'} + c_{\beta-\alpha}\zeta_{ff'},$$

$$\xi_{ff'}^{H} \equiv c_{\beta-\alpha}\delta_{ff'} - s_{\beta-\alpha}\zeta_{ff'},$$

$$\xi_{ff'}^{A} \equiv (2T_{3}^{f})\zeta_{ff'},$$

$$(\text{for } f = d, s, b),$$

$$\zeta_{ff'} = \frac{\cot\beta\delta_{ff'}}{-\tan\beta\delta_{ff'}} \qquad (\text{for } f = e, \mu, \tau)$$

L

$$\begin{split} \zeta_{uu} &\equiv -\tan\beta - (\tan\beta + \cot\beta) \frac{\cos\rho_u - 1}{2} ,\\ \zeta_{cc} &\equiv \cot\beta ,\\ \zeta_{tt} &\equiv \cot\beta - (\tan\beta + \cot\beta) \frac{1 - \cos\rho_u}{2} ,\\ \zeta_{ut} &= \zeta_{tu} = (\tan\beta + \cot\beta) \frac{\sin\rho_u}{2} . \end{split}$$

very striking signature of the model

u-specific VAM with muon-specific lepton sector

An extreme model: muon-specific 2HDM to accommodate muon g-2 [T. Abe, R. Sato, K. Yagyu JHEP 1707, 012 (2017)]

only muon yukawa is tan β enhanced ~ 3000 better fit against the lepton universality constraints constrained by multi-muon searches at LHC (A/H \rightarrow µµ 100%)

VAM is essentially just a 2HDM with various PQ charge assignments (only one q_R PQ charged) lepton sector is irrelevant to the strong CP problem nor domain wall problem

muon yukawa has to be enhanced to accommodate muon g-2 \Leftrightarrow corresponding VEV is small (tan β >>1)

conclusions

strong CP problem \Rightarrow domain wall problem

 \Rightarrow variant axion models (only 1 right-handed quark PQ charged)

Lepton sector has freedom for PQ charge assignments and muon g-2 anomaly can be accommodated by assign PQ charge to all leptons $mA \sim 15 \text{GeV}$, $\tan\beta \sim 40$ by assign PQ charge only to muon $mA \sim 1 \text{ TeV}$, $\tan\beta \sim 3000$

For light A case, $t \rightarrow uA$, $A \rightarrow \tau\tau$ current constraints marginal

using boosted di-tau-tagging improves sensitivity significantly

For both cases, flavor violating heavy higgs decays would be the signatures of this model.