Signature of light Z' boson from scalar boson decay in local $L_{\mu} - L_{\tau}$ model at the ILC

Takaaki Nomura (KIAS)

In collaboration with; Takashi Shimomura (Miyazaki U.)

(Based on arXiv: 1803.00842)

2018-10-02 Beyond the BSM (The 4th Kavli IPMU-Durham IPPP KEK-KIAS workshop) @ Ikaho, Japan

Out line of the talk

- 1. Introduction
- 2. Model and constraint
- 3. Signal at the ILC
- 4. Summary

1. Introduction

Local U(1)_{Lµ-LT} symmetry model $\mu(v_{\mu})$ and $\tau(v_{\tau})$ have opposite charge

He, Joshi, Lew, Volkas PRD 43 (1991) He, Lew, Volkas PRD 50 (1994)

> Motivated by resolving muon (g-2) anomaly $\Delta a_{\mu} \equiv \Delta a_{\mu}^{exp} - \Delta a_{\mu}^{th} = (28.8 \pm 8.0) \times 10^{-10},$ $\sim 3.3\sigma - 3.6\sigma \text{ deviation}$

Light Z' boson can contribute to muon (g-2)

$$\Delta a_{\mu} = \frac{g'^2}{8\pi} \int_0^1 dx \frac{2m_{\mu}^2 x^2 (1-x)}{x^2 m_{\mu}^2 + (1-x)m_2^2}$$

* g': new gauge coupling

1. Introduction

Allowed parameter region explaining g-2

1. Introduction

We also have new scalar boson

$$\Box$$
 From scalar field breaking U(1)_{Lµ-Lτ}

The vev of the scalar can be estimated as

$$v_{\phi} = rac{m_{Z^{\prime}}}{g^{\prime}} \sim \mathcal{O}(10 - 100) \; \mathrm{GeV}$$

• The mass of the scalar will be the same order or less $m_\phi = \sqrt{\lambda} v_\phi \leq \mathcal{O}(100)~{
m GeV}$

It can be produced via new scalar-Higgs mixing Its decay into Z' bosons indicate symmetry breaking

Out line of the talk

1. Introduction

2. Model and constraint

- 3. Signal at the ILC
- 4. Summary

Minimal local $U(1)_{L\mu-L\tau}$ model

	Scalar		Lepton						
	Η	φ	L_e	L_{μ}	$L_{ au}$	e_R	μ_R	$ au_R$	
$SU(2)_L$	2	1	2	2	2	1	1	1	
$U(1)_Y$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	-1	-1	-1	
$U(1)_{L_{\mu}-L_{\tau}}$	0	1	0	1	-1	0	1	-1	

- Anomaly free
- > VEV of ϕ breaks U(1)_{Lµ-LT}

$$H = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}} (v + \tilde{H} + iG^0) \end{pmatrix}, \quad \varphi = \frac{1}{\sqrt{2}} (v_{\varphi} + \tilde{\phi} + iG_{Z'})$$

Lagrangian of the model

$$\mathcal{L} = \mathcal{L}_{\rm SM} + |D_{\mu}\varphi|^{2} - V - \frac{1}{4}Z'_{\mu\nu}Z'^{\mu\nu} - \frac{\epsilon}{2}B_{\mu\nu}Z'^{\mu\nu} + g'Z'_{\mu}J^{\mu}_{Z'},$$

Scalar potential Kinetic mixing

$$J^{\mu}_{Z'} = \bar{L}_{\mu}\gamma^{\mu}L_{\mu} + \bar{\mu}_{R}\gamma^{\mu}\mu_{R} - \bar{L}_{\tau}\gamma^{\mu}L_{\tau} - \bar{\tau}_{R}\gamma^{\mu}\tau_{R},$$

$$V = -\mu^{2}_{H}H^{\dagger}H - \mu^{2}_{\varphi}\varphi^{*}\varphi + \frac{\lambda_{H}}{2}(H^{\dagger}H)^{2} + \frac{\lambda_{\varphi}}{2}(\varphi^{*}\varphi)^{2} + \lambda_{H\varphi}(H^{\dagger}H)(\varphi^{*}\varphi),$$

Mass eigenstates/eigenvalues after symmetry breaking

• Scalar bosons

$$h = \cos \alpha \tilde{H} + \sin \alpha \tilde{\phi} \qquad \left(\tan 2\alpha = \frac{2\lambda_{H\varphi} v v_{\varphi}}{\lambda_{H} v^{2} - \lambda_{\varphi} v_{\varphi}^{2}} \right)$$
$$\phi = -\sin \alpha \tilde{H} + \cos \alpha \tilde{\phi} \qquad \left(\tan 2\alpha = \frac{2\lambda_{H\varphi} v v_{\varphi}}{\lambda_{H} v^{2} - \lambda_{\varphi} v_{\varphi}^{2}} \right)$$

$$m_{h,\phi}^2 = \frac{\lambda_H v^2 + \lambda_\varphi v_\varphi^2}{4} \pm \frac{1}{4} \sqrt{\left(\lambda_H v^2 - \lambda_\varphi v_\varphi^2\right)^2 + 4\lambda_{H\varphi}^2 v^2 v_\varphi^2},$$

• gauge boson

 $Z_{L\mu-L\tau} \approx Z' - \varepsilon \sin \theta_W Z \qquad m_{Z'} = g' v_{\varphi}$

Yukawa and gauge interactions

$$L \supset \sin \alpha \phi \left[\sum_{f} \frac{m_{f}}{v} \overline{f} f + \frac{m_{Z}^{2}}{v} Z_{\mu} Z^{\mu} + \frac{2m_{W}^{2}}{v} W_{\mu}^{+} W^{-\mu} \right] + \cos \alpha h \left[\sum_{f} \frac{m_{f}}{v} \overline{f} f + \frac{m_{Z}^{2}}{v} Z_{\mu} Z^{\mu} + \frac{2m_{W}^{2}}{v} W_{\mu}^{+} W^{-\mu} \right] + \frac{m_{Z'}^{2}}{v_{\varphi}} \cos \alpha \phi Z^{\mu} Z^{\mu}_{\mu} + \frac{m_{Z'}^{2}}{v_{\varphi}} \sin \alpha h Z^{\mu} Z^{\mu}_{\mu} + Z^{\mu}_{\mu} (-e\varepsilon \cos \theta_{W} J^{\mu}_{EW} + g^{\mu}_{Z} J^{\mu}_{Z}) + O(\varepsilon^{2})$$

- New scalar interact with SM particles via mixing between SM Higgs
- > Z' interact with μ and τ type leptons
- Z'e+e- interaction via kinetic mixing

Decay mode of new particles

• Scalar boson (dominant modes)

$$\begin{split} \Gamma_{\phi \to Z'Z'} &= \frac{g'^2 \cos^2 \alpha}{8\pi} \frac{m_{Z'}^2}{m_{\phi}} \sqrt{1 - \frac{4m_{Z'}^2}{m_{\phi}^2}} \left(2 + \frac{m_{\phi}^4}{4m_{Z'}^4} \left(1 - \frac{2m_{Z'}^2}{m_{\phi}^2} \right)^2 \right) \\ \Gamma_{\phi \to f\bar{f}} &= \frac{m_{\phi}}{8\pi} \left(\frac{m_f}{v} \right)^2 \sin^2 \alpha \left(1 - \frac{4m_f^2}{m_{\phi}^2} \right)^{\frac{3}{2}} \end{split}$$

To resolve muon g-2,

$$\frac{m_{\phi}}{m_{Z'}} \sim 10^3 \quad \left(m_{Z'} \sim 0.1 \, GeV, m_{\phi} \sim 100 \, GeV\right)$$

Z'Z' model is dominant: $BR(\Phi \rightarrow Z'Z') > 0.99$

Decay mode of new particles

We consider $\epsilon/g' = 1 \implies Z'$ mainly decay into neutrinos

Thus decay chain on new scalar is

$$\phi \to Z' Z' \to \nu \overline{\nu} \nu \overline{\nu}$$

Missing energy at detector

Different from SM Higgs decay

Constraints from invisible Higgs decay and scalar mixing

SM Higgs can decay into new particles $H \rightarrow Z'Z', \phi\phi$

Invisible Higgs decay

In addition, we apply constraints from scalar mixing

 $BR(H \rightarrow invisible) < 0.25, \quad \sin \alpha < 0.3$

Other constrains

• Z' search in meson decays at NA64: Z' $\rightarrow e^+e^-$

NA64 collaboration (2017)

$$rightarrow \varepsilon / g' \le 2(0.6)$$
 For $m_{Z'} = 100 (5) \text{ MeV}$

Mostly Z' decays into neutrinos

Out line of the talk

- 1. Introduction
- 2. Model and constraint
- 3. Signal at the ILC
- 4. Summary

3. Signal at the ILC

The Signal from hidden scalar production at the ILC

Signal processes

$$e^+e^- \rightarrow l^+l^- + E_{mis}$$
 $(l = e, \mu)$
 $e^+e^- \rightarrow jj + E_{mis}$

Background processes

$$e^+e^- \rightarrow l^+l^-\nu\nu, \quad \tau^+\tau^-$$

 $e^+e^- \rightarrow jj\nu\nu, \quad \tau^+\tau^-$

(with leptonic decay of tau)

(with hadronic decay of tau)

Numerical analysis for signals/BGs at the ILC

- We carry out simulation study using MADGRAPH/MADEVENT
- Applying PYTHIA6 for ISR/FSR and hadronization
- Detector simulation applying DELPHES

(ILD card based on arXiv:1306.6329)

We also apply polarized beam at the ILC 250 GeV

(e⁺, e⁻) polarization (+,-) \rightarrow LL polarization

(e^+ , e^-) polarization (-,+) \rightarrow RR polarization

Max integrated luminosity is taken as 900 fb⁻¹ each polarization

LL: (e⁺, e⁻) polarization (+30%,-80%) with L=900 fb⁻¹

RR: (e⁺, e⁻) polarization (-30%,+80%) with L=900 fb⁻¹

With more realistic polarization ratio

The cross section for scalar production

 $(\kappa_{\alpha}=(0.05/\sin\alpha)^2)$

The cross section for SM backgrounds

 $\sigma(e^+e^- \to l^+l^-\nu\nu) \sim 1.99(0.186) \ pb, \quad \sigma(e^+e^- \to \tau^+\tau^-) \sim 2.36(1.94) \ pb$ $\sigma(e^+e^- \to jj\nu\nu) \sim 0.398(0.158) \ pb$ For LL(RR) polarization

Kinematical cuts and mass reconstruction

Basic cuts

$$p_T(l^{\pm}) > 7 \ GeV, \quad |\eta(l^{\pm})| < 2.5$$
 For charged leptons
 $p_T(j) > 20 \ GeV, \quad |\eta(j)| < 5.0$ For jets

Invariant mass cuts

$$\begin{split} m_{Z} &-10 \; GeV < M_{l^{+}l^{-}} < m_{Z} + 10 \; GeV \\ m_{Z} &-20 \; GeV < M_{jj} < m_{Z} + 5 \; GeV \end{split}$$

For charged leptons For jets

Scalar mass reconstruction

$$M_{\phi}^{rec} = \sqrt{s + m_Z^2 - 2\left(E_{l^+/j_1} + E_{l^-/j_2}\right)\sqrt{s}}$$

Distributions for leptonic signal/BGs

of events before/after kinematical cuts

	$\kappa_{\alpha} N_S^{\kappa_{\alpha}=1}; m_{\phi} = (65, 30) \text{ GeV}$	$N_{BG}^{\ell^+\ell^-\nu\bar\nu}$	$N_{BG}^{ au au}$	$\kappa_{\alpha}S_{cl}^{\kappa_{\alpha}=1}$
Only basic cuts	(51., 53.)	7.7×10^4	$6.3 imes 10^4$	(0.14, 0.14)
+ $M_{\ell^+\ell^-}$ cut	(48., 49.)	$2.1 imes 10^4$	$1.3 imes 10^4$	(0.25, 0.27)
+ $M_{\phi_{\ell}}^{rec}$ cut for $m_{\phi} = 65 \text{ GeV}$	$(42., \cdots)$	2.2×10^2	$1.3 imes 10^2$	$(2.2, \cdots)$
+ $M_{\phi_{\ell}}^{rec}$ cut for $m_{\phi} = 30 \text{ GeV}$	$(\cdots, 34.)$	1.7×10^2	14.	$(\cdots, 2.5)$

Comparing different polarizations

	$\kappa_{\alpha} N_S^{\kappa_{\alpha}=1}; m_{\phi} = 65(30) \text{ GeV}$	$N_{BG}^{\ell^+\ell^- \nu \bar{\nu}}$	$N_{BG}^{ au au}$	$\kappa_{\alpha}S_{cl}^{\kappa_{\alpha}=1}$
RR	42.(34.)	$2.2(1.7)\times10^2$	$1.3(0.14)\times10^2$	2.2(2.5)
LL	53.(47.)	$4.7(1.7) imes 10^3$	$1.6(0.15)\times10^2$	0.75(1.1)
LL + RR	95.(81.)	$4.9(1.9) imes10^3$	$2.9(0.29)\times10^2$	1.3(1.8)

$$\left(S_{cl} = \frac{N_S}{\sqrt{N_{BG}}}, \right)$$

3. Signal at the ILC

Distributions for hadronic signal/BGs

of events before/after kinematical cuts

	$\kappa_{\alpha} N_S^{\kappa_{\alpha}=1}; m_{\phi} = (65, 30) \text{ GeV}$	$N_{BG}^{jj\nu\bar{\nu}}$	$N_{BG}^{ au au}$	$\kappa_{\alpha}S_{cl}^{\kappa_{\alpha}=1}$
Only basic cuts	$(3.8 imes 10^2, 1.2 imes 10^3)$	$1.1 imes 10^5$	$6.1 imes 10^5$	(0.45, 0.46)
$+ M_{jj}$ cut	$(2.9 imes 10^2, 9.3 imes 10^2)$	$8.0 imes 10^4$	$3.0 imes 10^4$	(0.88, 1.1)
+ $M_{\phi_j}^{rec}$ cut for $m_{\phi} = 65 \text{ GeV}$	$(1.3 imes10^2,\cdots)$	$5.7 imes 10^3$	$1.3 imes 10^2$	$(1.6, \cdots)$
+ $M_{\phi_j}^{rec}$ cut for $m_{\phi} = 30 \text{ GeV}$	$(\cdots, 1.5 imes 10^2)$	$3.3 imes10^2$	6.4	$(\cdots, 8.3)$

Comparing different polarizations

	$\kappa_{\alpha} N_S^{\kappa_{\alpha}=1}; m_{\phi} = 65(30) \text{ GeV}$	$N_{BG}^{jj\nu\bar{\nu}}$	$N_{BG}^{ au au}$	$\kappa_{\alpha}S_{cl}^{\kappa_{\alpha}=1}$
RR	$1.3(1.5) imes10^2$	$5.6(0.33) imes10^3$	$1.3(0.064) imes 10^2$	1.6(8.3)
LL	$1.6(1.9) imes10^2$	$1.3(0.085) imes 10^4$	$2.0(0.13)\times 10^2$	1.4(6.5)
LL + RR	$2.9(3.4) imes10^2$	$1.9(0.12)\times10^4$	$3.3(0.19)\times10^2$	2.1(9.7)

Summary and Discussions

□ Minimal U(1)_{Lµ-Lτ} model

- ✓ Anomaly free model
- ✓ Resolve anomalous muon magnetic moment
- $\checkmark\,$ We have new Z' and scalar bosons

□ Signal at the ILC

- $\checkmark\,$ Scalar production via mixing between the SM Higgs
- ✓ New scalar dominantly decay into Z'Z' followed by $Z' \rightarrow vv$
- ✓ Signal: Dilepton or Dijet + missing energy
- $\checkmark\,$ Testable at the ILC experiment

Thanks for listening !