Measuring the ratio of HWW and HZZ couplings

through W^+W^-H production

Gang Li

National Taiwan University

In collaboration with Cheng-Wei Chiang and Xiao-Gang He arXiv: 1805.01689, JHEP 1808 (2018) 126

Workshop "Beyond the SM"

Oct. 2, 2018

SM(-like) Higgs boson

Ratio of HWW and HZZ couplings

$$\lambda_{WZ} \equiv \kappa_W / \kappa_Z$$

The allowed regions by experimental measurements are two-fold

 λ_{WZ}

At the tree-level in the SM

(1)
$$\rho \equiv \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} = 1$$

(2)
$$\frac{g_{HWW}^{\rm SM}}{g_{HZZ}^{\rm SM}\cos^2\theta_W} = 1$$

Exp:
$$\rho_0 = 1.00039 \pm 0.00019$$

PDG 2018

Exp: negative region can not be excluded by considered signal strength measurements

(1) and (2) are not necessarily correlated

For example, in the Georgi-Machacek model,

H. Georgi and M. Machacek, Nucl. Phys. B262, 463 (1985)

ho=1 (custodial symmetry),

 λ_{WZ} =1,-1/2

SM + complex triplet + real triplet & custodial symmetry

H. Georgi and M. Machacek, Nucl. Phys. B262, 463 (1985).

 $\rho = 1, \lambda_{WZ}$ =1,-1/2

A realistic model: J.-Y. Cen, J.-H. Chen, X.-G. He, J.-Y. Su, 1803.05254

SM + complex triplet + real triplet & ho=1

$$\lambda_{WZ}^{h_1^m} = 1 - \frac{2v_{\chi}(\sqrt{2}\cos\gamma + \sin\gamma)}{v_H\cot\alpha + 4v_{\chi}\sin\gamma},$$

$$\lambda_{WZ}^{h_2^m} = 1 + \frac{2v_{\chi}(\sqrt{2}\cos\gamma + \sin\gamma)}{v_H\tan\alpha - 4v_{\chi}\sin\gamma},$$

$$\begin{pmatrix}h_H\\h_{\xi}\\h_{\chi}\end{pmatrix} = \begin{pmatrix}\cos\alpha & \sin\alpha & 0\\ -\cos\gamma\sin\alpha & \cos\gamma\cos\alpha & \sin\gamma\\ \sin\gamma\sin\alpha & -\sin\gamma\cos\alpha & \cos\gamma\end{pmatrix}\begin{pmatrix}h_1^m\\h_2^m\\h_3^m\end{pmatrix}$$

$$\lambda_{WZ}^{h_3^m} = \frac{1}{2} + \frac{1}{\sqrt{2}}\tan\gamma.$$

$$\lambda_{WZ}$$
 is generally arbitrary

In GM model, $tan\gamma = -\sqrt{2}$

C. Mariotti, G. Passarino, 1612.00269

HWW and *HZZ* couplings can interfere at the tree-level

 $a\bar{a} \rightarrow W^+W^-H$, a = q, e^-

taking m_H =125 GeV as an example

At the LHC: SM pp -> W+ W- H can not be discovered (below 2σ)

cross section (ab)	basic cuts	mjj-10	mjj-5	mll-25
W^+W^-H	8.648	7.413	6.882	5.296
$W^+W^+W^-W^-$	4.318	4.134	3.856	2.880
$jjW^{\pm}W^{\pm}W^{\mp}$	372.5	29.38	14.13	9.907
$W^+W^-Z(\ell^+\ell^-)$	472.1	(444.4)	(414.6)	4.107
$W^+W^-Z(\tau^+\tau^-)$	8.322	7.930	7.443	6.137
$jjW^{\pm}Z(\ell^+\ell^-)$	7.578×10^4	(7.187×10^4)	(3.616×10^4)	30.39
$t\bar{t}W^{\pm}$	803.9	70.90	34.16	24.68
$S/\sqrt{S+B}$ for 3 ab ⁻¹		1.211	1.544	1.038

Table 1. Cut flow of the signal and background cross sections and the significances at the 13-TeV LHC. The *b*-tagging efficiency is assumed to be 70%.

At future electron-positron colliders:

Interference in the SM ($\lambda_{WZ} = 1$) is negative

Conventional approach

do kw=kw_min, kw_max, step_kw do kz=kz_min, kz_max, step_kz (1) generate p p > W+ W- H, W+ > I+ vI, W- > j j, H > x y (2) impose cuts to suppress backgrounds (3) obtain the significance (4) obtain the sensitivity to the ratio end do end do Show plot of sensitivity

Signal cross section after cuts:

$$\sigma_S = \kappa_W^2 \left(\sigma_W \epsilon_W + \lambda_{WZ}^{-1} \sigma_{WZ} \epsilon_{WZ} + \lambda_{WZ}^{-2} \sigma_Z \epsilon_Z \right) \mathcal{B} \qquad \mathcal{B} = \mathcal{B}(\kappa_W, \kappa_Z)$$

we only need three benchmark scenarios:

BP1:
$$\kappa_W = 1, \ \kappa_Z = 1,$$

BP2: $\kappa_W = 1, \ \kappa_Z = -1,$
BP3: $\kappa_W = 1, \ \kappa_Z = 0.$

cut efficiencies are independet of the branching ratios

$$\begin{split} \epsilon_W &= \frac{\sigma_{\text{BP3}}\epsilon_{\text{BP3}}}{\sigma_W}, \\ \epsilon_{WZ} &= \frac{\sigma_{\text{BP1}}\epsilon_{\text{BP1}} - \sigma_{\text{BP2}}\epsilon_{\text{BP2}}}{2\sigma_{WZ}}, \\ \epsilon_Z &= \frac{\sigma_{\text{BP1}}\epsilon_{\text{BP1}} - \sigma_{\text{BP3}}\epsilon_{\text{BP3}}}{\sigma_Z} - \frac{\sigma_{\text{BP1}}\epsilon_{\text{BP1}} - \sigma_{\text{BP2}}\epsilon_{\text{BP2}}}{2\sigma_Z} \end{split}$$

Discovery significance

G. Cowan, K. Cranmer, E. Gross, O. Vitells, Eur.Phys.J. C71 (2011) 1554

$$S_D = \sqrt{2\left[(n_s + n_b)\ln\frac{n_s + n_b}{n_b} - n_s\right]},$$

Discrimination between $\lambda_{WZ} \neq 1$ and $\lambda_{WZ} = 1$

ratio test
$$Q = -2 \ln \frac{L(\lambda_0)}{L(1)}$$
 under the SM hypothesis

$$L(\lambda_{WZ}) = P(\text{data}|n_b + n_s^{\lambda_{WZ}}) \qquad \text{data} = n_b + n_s^{\lambda_{WZ}=1}$$

 $\lambda_{WZ} = \lambda_0$ is rejected at the Z-sigma level with $Z = \Phi(1-p)^{-1}$

$$Z = \sqrt{2\left[\left(n_s^{\lambda_{WZ}=1} + n_b\right)\ln\frac{n_s^{\lambda_{WZ}=1} + n_b}{n_s^{\lambda_{WZ}=\lambda_0} + n_b} + \left(n_s^{\lambda_{WZ}=\lambda_0} - n_s^{\lambda_{WZ}=1}\right)\right]}.$$

Higgs decay channel:

(1) H -> b b~
$$\mathcal{B} = \mathcal{B}_0 \frac{1}{\Gamma_H / \Gamma_H^0},$$

$$\Gamma_H = \Gamma_H^0 \left[1 + (\kappa_W^2 - 1) \mathcal{B}_{HWW}^0 + (\kappa_Z^2 - 1) \mathcal{B}_{HZZ}^0 \right],$$

Higgs decay channel:

(2) H -> W+ W- $\mathcal{B} = \mathcal{B}_0 rac{\kappa_W^2}{\Gamma_H / \Gamma_H^0}$

scheme A: couplings of H to SM fermions are the same as the SM Higgs boson scheme B: H does not couple to the SM fermions at the tree-level

$$\Gamma_{H} = \begin{cases} \Gamma_{H}^{0} \left[1 + (\kappa_{W}^{2} - 1) \mathcal{B}_{HWW}^{0} + (\kappa_{Z}^{2} - 1) \mathcal{B}_{HZZ}^{0} \right], & \text{for scheme A,} \\ \Gamma_{H}^{0} \left[\kappa_{W}^{2} \mathcal{B}_{HWW}^{0} + \kappa_{Z}^{2} \mathcal{B}_{HZZ}^{0} \right], & \text{for scheme B.} \end{cases}$$
motivated by GM model

Higgs decay channel:

(2) H -> W+ W-

scheme A

Higgs decay channel:

(2) H -> W+ W- scheme B

Improvement of precision measurement, which assumes that λ_{WZ} is close to 1

Summary

- Through W+W–H production, one can measure the ratio λ_{WZ} of HWW and HZZ couplings
- The discovery prospect and discrimination ability are studied
- Combined with measurements of HWW or HZZ coupling at HL-LHC, precision of λ_{WZ} can be 6.3%

Higgs measurements

19

Higgs measurements

			Effective	Resolved
Production	Loops	Interference	scaling factor	scaling factor
$\sigma(ggF)$	\checkmark	t-b	κ_g^2	$1.06 \cdot \kappa_t^2 + 0.01 \cdot \kappa_b^2 - 0.07 \cdot \kappa_t \kappa_b$
$\sigma(\text{VBF})$	_	_	2	$0.74 \cdot \kappa_W^2 + 0.26 \cdot \kappa_Z^2$
$\sigma(WH)$	_	_		κ_W^2
$\sigma(qq/qg \to ZH)$	_	_		κ_Z^2
$\sigma(gg \to ZH)$	\checkmark	t–Z		$2.27 \cdot \kappa_Z^2 + 0.37 \cdot \kappa_t^2 - 1.64 \cdot \kappa_Z \kappa_t$
$\sigma(ttH)$	_	-		κ_t^2
$\sigma(gb \to tHW)$	_	t-W		$1.84 \cdot \kappa_t^2 + 1.57 \cdot \kappa_W^2 - 2.41 \cdot \kappa_t \kappa_W$
$\sigma(qq/qb \to tHq)$	_	t-W		$3.40 \cdot \kappa_t^2 + 3.56 \cdot \kappa_W^2 - 5.96 \cdot \kappa_t \kappa_W$
$\sigma(bbH)$	_	-		κ_b^2
Partial decay width				
Γ^{ZZ}	_	_		κ_Z^2
Γ^{WW}	_	_		κ_W^2
$\Gamma^{\gamma\gamma}$	\checkmark	t-W	κ_{γ}^2	$1.59 \cdot \kappa_W^2 + 0.07 \cdot \kappa_t^2 - 0.66 \cdot \kappa_W \kappa_t$

 κ_t is involved in the determination of κ_W or κ_Z

Higgs decay channel:

(1) H -> b b~

TABLE I: Cut flow of signal and backg	ground cross sections in the $jj\ell^{\pm}bb$ channel
---------------------------------------	---

cross section (fb)	basic cuts, <i>b</i> -tagged	m_{jj}	m_{bb}	p_T^ℓ
BP1	0.721	0.703	0.702	0.581
BP2	1.06	1.03	1.03	0.864
BP3	0.822	0.802	0.795	0.664
$t\bar{t}$	87.5	85.6	11.0	7.92
WWZ	1.09	1.07	0.0305	0.023

 $\epsilon_{\rm BP1} = 0.296$ $\epsilon_{\rm BP2} = 0.308$ $\epsilon_{\rm BP3} = 0.300.$

 $\epsilon_W = 0.300, \quad \epsilon_Z = 0.346, \quad \epsilon_{WZ} = 0.337.$

Higgs decay channel:

0 mm

(2) H -> W+ W-

TABLE II: Cut flow of the signal and background cross sections in the $\ell^{\pm}\ell^{\pm}\ell^{\mp}jj$ channel.

cross section (ab)	basic cuts	m_{jj}	$m^{\rm SFOS}_{\ell^+\ell^-}$
BP1	25.5	22.4	16.9
BP2	36.6	32.4	24.6
BP3	28.4	25.0	18.9
4W	4.92	4.57	3.04
$WWZ(\ell^+\ell^-)$	919	896	7.59
$WWZ(\tau^+\tau^-)$	9.53	9.35	6.85

 $\epsilon_{\rm BP1} = 0.243, \quad \epsilon_{\rm BP2} = 0.250, \quad \epsilon_{\rm BP3} = 0.242.$ $\epsilon_W = 0.242, \quad \epsilon_Z = 0.309, \quad \epsilon_{WZ} = 0.264.$