

Realization of spontaneous gauge and supersymmetry breaking vacuum

Yuji Omura (KMI, Nagoya Univ.)

based on 1705.00809 collaboration with T. Kobayashi, O. Seto, K. Ueda

Outline

- Introduction
- SUSY breaking associated with gauge symmetry breaking.

gauge U(I) model

Pati-Salam

Summary

Introduction

 I would like to talk about SUSY breaking in models with gauge symmetries.

Introduction

- I would like to talk about SUSY breaking in models with gauge symmetries.
- One motivation is

"unify GUT breaking and SUSY breaking sectors"

Introduction

- I would like to talk about SUSY breaking in models with gauge symmetries.
- One motivation is

"unify GUT breaking and SUSY breaking sectors"

to solve the problems concerned with SUSY breaking.

Problems about SUSY breaking

to solve the problems concerned with SUSY breaking.

Problems about SUSY breaking

SUSY model consists of superpotential (W: holomorphic func.) and Kahller. W contributes to the scalar potential as

$$V(\Phi_I) = \sum_{I} \left| \frac{\partial W(\Phi_I)}{\partial \Phi_I} \right|^2 + (V_D(\Phi_I))$$

to solve the problems concerned with SUSY breaking.

Problems about SUSY breaking

SUSY model consists of superpotential (W: holomorphic func.) and Kahller. W contributes to the scalar potential as

$$V(\Phi_I) = \sum_{I} \left| \frac{\partial W(\Phi_I)}{\partial \Phi_I} \right|^2 + (V_D(\Phi_I))$$

If SUSY is conserved, $\partial_{\Phi_I} W = 0 \ (V = 0)$

to solve the problems concerned with SUSY breaking.

Problems about SUSY breaking

SUSY model consists of superpotential (W: holomorphic func.) and Kahller. W contributes to the scalar potential as

$$V(\Phi_I) = \sum_{I} \left| \frac{\partial W(\Phi_I)}{\partial \Phi_I} \right|^2 + (V_D(\Phi_I))$$

In typical SUSY breaking models,

$$W = fX \qquad \Longrightarrow \qquad \frac{\partial W}{\partial X} = f \neq 0 \qquad \Longrightarrow \qquad V = f^2$$
 X is flat

to solve the problems concerned with SUSY breaking.

Problems about SUSY breaking

SUSY model consists of superpotential (W: holomorphic func.) and Kahller. W contributes to the scalar potential as

$$V(\Phi_I) = \sum_{I} \left| \frac{\partial W(\Phi_I)}{\partial \Phi_I} \right|^2 + (V_D(\Phi_I))$$

In typical SUSY breaking models,

$$W = fX \qquad \Longrightarrow \qquad \frac{\partial W}{\partial X} = f \neq 0 \qquad \Longrightarrow \qquad V = f^2$$

Phase rotation of X is namely R-symmetry, and it is crucial to SUSY breaking.

X is flat

Spontaneous SUSY breaking seems to imply the existence of R-symmetry in the models. $R_{charge}[W] = 2$

(Nelson, Seiberg, hep-th/9309299)

R-symmetry forbids gaugino masses.

Spontaneous SUSY breaking seems to imply the existence of R-symmetry in the models. $R_{charge}[W] = 2$

(Nelson, Seiberg, hep-th/9309299)

R-symmetry forbids gaugino masses.

Our vacuum have to break both R-symmetry and SUSY:

Spontaneous SUSY breaking seems to imply the existence of R-symmetry in the models. $R_{charge}[W] = 2$

(Nelson, Seiberg, hep-th/9309299)

R-symmetry forbids gaugino masses.

Our vacuum have to break both R-symmetry and SUSY:

$$W = fX + Xw(\phi)$$

 $\partial_X W \neq 0$ and SUSY is broken, but scalar comp. of X is flat@tree

 $\langle X \rangle \neq 0$ for R-symmetry breaking

Spontaneous SUSY breaking seems to imply the existence of R-symmetry in the models. $R_{charge}[W] = 2$

(Nelson, Seiberg, hep-th/9309299)

R-symmetry forbids gaugino masses.

Our vacuum have to break both R-symmetry and SUSY:

$$W = fX + Xw(\phi)$$

 $\partial_X W \neq 0$ and SUSY is broken, but scalar comp. of X is flat@tree

 $\langle X \rangle \neq 0$ for R-symmetry breaking

Problem 2

The scalar comp. of X may be stabilized by the radiative correction, but not so simple. (Often stabilized at X=0.)

(Shih,hep-th/0703 I 96;Sun,08 I 0.0477)

Even if R-symmetry is broken, obtaining gaugino mass is not trivial.

(Komargodski,Shih,0902.0030)

Even if R-symmetry is broken, obtaining gaugino mass is not trivial.

One illustrative R-symmetric model

(Komargodski, Shih, 0902.0030)

$$W = fX + \lambda X \phi_+ \phi_- + m_1 X_+ \phi_- + m_2 X_- \phi_+$$

$$X = v_X + \theta^2 F$$
 Messengers charged under SM gauge symmetry

Even if R-symmetry is broken, obtaining gaugino mass is not trivial.

One illustrative R-symmetric model

(Komargodski, Shih, 0902.0030)

$$W = fX + \lambda X \phi_+ \phi_- + m_1 X_+ \phi_- + m_2 X_- \phi_+$$

$$X = v_X + \theta^2 F$$
 Messengers charged under SM gauge symmetry

Even if $\phi_{+/-}$ and $X_{+/-}$ are integrated out at the origin,

$$\int d^2 heta \Delta b \; (\ln m_1 m_2) \, W^lpha W_lpha$$
 gaugino mass is vanishing

Even if R-symmetry is broken, obtaining gaugino mass is not trivial.

One illustrative R-symmetric model

(Komargodski, Shih, 0902.0030)

$$W = fX + \lambda X \phi_+ \phi_- + m_1 X_+ \phi_- + m_2 X_- \phi_+$$

$$X = v_X + \theta^2 F$$
 Messengers charged under SM gauge symmetry

Even if $\phi_{+/-}$ and $X_{+/-}$ are integrated out at the origin,

$$\int d^2 heta \Delta b \; (\ln m_1 m_2) \, W^lpha W_lpha$$
 gaugino mass is vanishing

Motivated by those problems, I propose a model where ϕ_+ , ϕ_- , X_+ , X_- are charged under extra gauge symmetry.

Then, we find a realistic vacuum to cause SUSY breaking in association with gauge symmetry (GUT) breaking.

SUSY breaking associated with gauge symmetry breaking

For the demonstration, let me consider the U(1) case:

(Kobayashi, Seto, YO, Ueda, I 705.00809)

Matter contents

Chiral superfield	SM	U(1)	$U(1)_R$
ϕ_\pm	$\operatorname{singlet}$	±1	0
X_\pm	singlet	± 1	2
X	singlet	0	2

superpotential

$$W = fX + \lambda X \phi_{+} \phi_{-} + m_1 X_{+} \phi_{-} + m_2 X_{-} \phi_{+}$$

U(1) D-term

$$V_D = \frac{g^2}{2} \left(|\phi_+|^2 - |\phi_-|^2 + |X_+|^2 - |X_-|^2 \right)^2$$

Important point is that there is no vacuum where all F-terms are vanishing in this model.

For the demonstration, let me consider the U(1) case:

(Kobayashi, Seto, YO, Ueda, I 705.00809)

Matter contents

Chiral superfield	SM	U(1)	$U(1)_R$
ϕ_{\pm}	$\operatorname{singlet}$	±1	0
X_\pm	singlet	± 1	2
X	singlet	0	2

superpotential

$$W = fX + \lambda X \phi_{+} \phi_{-} + m_1 X_{+} \phi_{-} + m_2 X_{-} \phi_{+}$$

U(1) D-term

$$V_D = \frac{g^2}{2} (|\phi_+|^2 - |\phi_-|^2 + |X_+|^2 - |X_-|^2)^2 \qquad \partial_X W = f + \lambda \phi_+ \phi_-$$
$$\partial_{X_-} W = m_2 \phi_+$$
$$\partial_{X_+} W = m_1 \phi_-$$

Important point is that there is no vacuum where all F-terms are vanishing in this model.

sketch of the scalar potential

sketch of the scalar potential

_Kobayashi, YO, Seto, Ueda, 1705.00809

Important points of this vacuum

• There is a runaway direction and stabilized by one-loop correction. Then, **R-symmetry** is also spontaneously broken.

Important points of this vacuum

- There is a runaway direction and stabilized by one-loop correction. Then, **R-symmetry** is also spontaneously broken.
- The runaway behavior is one generic feature of this kind of model, where *V_F* is non-vanishing anywhere.

When
$$\langle \Phi_I \rangle = v_I$$
 satisfies $\partial_{\Phi_I} V_F = W_{IJ} \overline{W^J} = 0$

there is flat direction (z) in VF: $\Phi_I = v_I + \overline{W_I}(v) \, z$

$$V_D = \frac{g_A^2}{2} \left(\Phi_I^{\dagger} q_{IJ}^A \Phi_L \right)^2 \qquad \qquad V_D |_{W_{IJ} \overline{W_J} = 0} = \frac{g_A^2}{2} \left(v_I q_{IJ}^A c_J \frac{1}{z} + c.c. + \mathcal{O}(z^{-2}) \right)$$

because of the gauge symmetry

• We have discussed a simple U(1) model:

 $U(1) \rightarrow nothing$

• We have discussed a simple U(1) model:

$$U(1) \rightarrow nothing$$

We can extend this to GUT symmetry:

If the fields, $\phi_{+/-}$ and X+/-, are charged under GUT symmetry (e.g., Pati-Salam, flipped SU(5) etc.),

$$SU(2)R \times SU(2)L \times SU(4) \rightarrow SM$$

 $SU(5) \times U(1) \rightarrow SM$

GUT breaking and SUSY breaking are unified.

Let's consider the application to "Pati-Salam" $(SU(4) \times SU(2)R \times SU(2)L)$.

(Kobayashi, YO, Seto, Ueda, *1705.00809*)

The charge assignment of ϕ +/- and X+/-

$$X_{+}, \phi_{+}: (\mathbf{4}, \mathbf{2}, \mathbf{1}), \mathbf{X}_{-}, \phi_{-}: (\overline{\mathbf{4}}, \mathbf{2}, \mathbf{1})$$

Superpotential

$$W = fX + \lambda XTr(\phi_{+}\phi_{-}) + m_{1}Tr(X_{+}\phi_{-}) + m_{2}Tr(X_{-}\phi_{+})$$

(Kobayashi, YO, Seto, Ueda, *1705.00809*)

The charge assignment of ϕ +/- and X+/-

$$X_{+}, \phi_{+} : (\mathbf{4}, \mathbf{2}, \mathbf{1}), \quad \mathbf{X}_{-}, \phi_{-} : (\overline{\mathbf{4}}, \mathbf{2}, \mathbf{1})$$

Superpotential

$$W = fX + \lambda XTr(\phi_{+}\phi_{-}) + m_{1}Tr(X_{+}\phi_{-}) + m_{2}Tr(X_{-}\phi_{+})$$

We can find the runaway direction that breaks R-symmetry, and we obtain the SUSY breaking vacuum at the one-loop.

$$\langle \phi_{\pm} \rangle = \begin{pmatrix} \mp \frac{F}{m_{1,2}} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \qquad \langle X_{\pm} \rangle = \begin{pmatrix} \pm z_0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \qquad \langle F_{X_{\pm}} \rangle = \begin{pmatrix} \pm F & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$SU(2)R \times SU(4) \rightarrow SU(3) \times U(1)Y$$

Another interesting point of this setup is

gaugino mass is generated by the gauge messenger contributions.

where

$$M_a = \frac{\alpha_a}{4\pi} \Delta b_a \frac{F}{z_0}$$
$$(\Delta b_Y \Delta b_2, \Delta b_3) = (-10/3, 0, -1)$$

Summary

- How to break SUSY spontaneously is one of the crucial issues.
- SUSY breaking model generally has R-symmetry.
 - → Both R-symmetry and SUSY should break down at our vacuum.
- I introduce one type of SUSY breaking models:

Gauge symmetry causes a runaway direction to break R-symmetry. Our vacuum is induced by stabilizing the runaway according to the one-loop correction.

• I gave some comments on the applications to GUT models in our paper. The detail will be shown near future.

Backup

Comments (Kobayashi, YO, Seto, Ueda, 1705.00809)

- Wino mass is vanishing at LO in the Pati-Salam. Other contributions like gravity mediation may be required.
- This mechanism can be applied to other GUTs, e.g., flipped SU(5).
- One issue of this mechanism is about tachyonic masses of sfermions.

one-loop contribution: almost vanishing at our vacuum.

two-loop contribution: we need more careful study.

Spontaneous R-symmetry breaking leads massless R-axion.

Gauged U(I)A instead of R-symmetry does work well.

Matter contents

Chiral superfield	SM	$U(1)_A$
$\overline{}$	$\operatorname{singlet}$	$s \gg 1$
Θ	singlet	-1

Superpotential

$$W = a_0 + a_1 S \left(\frac{\Theta}{\Lambda}\right)^s + \frac{a_2}{2} \left(S \left(\frac{\Theta}{\Lambda}\right)^s\right)^2 + \frac{a_3}{6} \left(S \left(\frac{\Theta}{\Lambda}\right)^s\right)^3 + \dots$$

 $W_{eff} pprox a_0 + (a_1 \lambda^s) S$ is obtained when $\lambda << 1$. $\left(\lambda \equiv \left\langle \frac{\Theta}{\Lambda} \right\rangle \right)$

$$\left(\lambda \equiv \left\langle \frac{\Theta}{\Lambda} \right\rangle \right)$$

U(1)A D-term potential

$$V_D = \frac{g^2}{2} \left(\xi^2 - |\Theta|^2 + s|S|^2 \right)^2$$

Effective Potential for S in SUGRA

$$\begin{split} V_{eff} &= f^2 + |W_{\Theta S}||S|^2 + g^2 s D_0 |S|^2 + \frac{1}{2} g^2 s^2 |S|^4 \\ &- 3 \frac{a_0^2}{M_p^2} + (S + S^\dagger) \frac{a_0 f}{M_p^2} + \frac{a_0^2}{M_p^2} |S|^2 + \dots \\ & \text{(originated from constant term, ao, in W)} \end{split}$$

$$V = V_F + V_D$$

SUGRA

(Maekawa, YO, Shigekami, Yoshida, 1712.05107)

SUSY is broken.
R symmetry is broken by SUGRA effect

