KIAS S KOREA INSTITUTE FOR ADVANCED STUDY

Scalar dark matter in heavy quark sector

Peiwen Wu (吴 培文)

Korea Institute for Advanced Study (KIAS)

Collaboration with

Pyungwon Ko (KIAS), Seungwon Baek (KIAS & Korea U.)

1606.00072 [JHEP10(2016)117]

1709.00697 [JCAP07(2018)008]

"Beyond the BSM" (The 4th Kavli IPMU-Durham IPPP-KEK-KIAS workshop) Gumma, Japan, Oct 3rd, 2018

1

Outline

- DM hints and detections
- Vector-like portal for DM-SM interaction
 - SM sector: $\{u_R, c_R, t_R\}$ as our choice
- Phenomenology
- Summary

DM hints and detections

https://www.mpi-hd.mpg.de/lin/research_DM.en.html

https://en.wikipedia.org

(DM)-(SM)-(Med.) Interaction

- Simplified model
- Renormalizable
- Gauge invariant

1511.04452, Giacchino *et al*, *Signatures from scalar dark matter with a vector-like quark mediator*

1308.0612, Bai, Berger. *Fermion portal dark matter*

Standard Model of Elementary Particle Ш ≈125.09 GeV/c² ≃1.28 GeV/c² H g С t gluon Higgs charm top S b bottom photon down strange electron tau Z boson muon EPTONS m <2.2 eV/c² <1.7 MeV/c² <15.5 MeV/c² 80.39 GeV/c² νμ ντ W Ve AUGI 1/2 1/2 electron muon tau neutrino W boson neutrino neutrino 1402.7358, Chang et al, Leptophilic effective WIMPs 1411.1407, Kile, Kobach, Soni, Lepton-Flavored Dark Matter

1606.00072, Baek, Ko, PW *Top-philic Scalar Dark Matter with a Vector-like Fermionic Top Partner*

1501.02202, Kilic, Klimek, Yu. Signatures of Top Flavored Dark Matter

1404.1918, Gomez et al, Dark Matter on Top

> 1612.01643, Abe et al, Dark matter physics, flavor physics and LHC constraints in the dark matter model with a bottom partner 4

1st gen. is strongly constrained

1511.04452, Giacchino *et al*, Signatures from scalar dark matter with a vector-like quark mediator

1308.0612, Bai, Berger. Fermion portal dark matter

Our focus: Heavy quarks Standard Model of Elementary Particia Ш Ш ≈125.09 GeV/c² ≃1.28 GeV/c² ≃173.1 GeV/c² mass 2.2 MeV/c² charge H g t С 1/2 gluon Higgs charm top ≃4.7 MeV/c -1/3 S -1/3 d -1/3 1/2 b γ 1/2 bottom photon down strange е -1 1/2 μ τ 1/2 1/2 Z boson electron muon tau EPTONS <1.7 MeV/c² ≈80.39 GeV/c² <2.2 eV/c² <15.5 MeV/c² W v_{e} V_{μ}^{0} $V_{1/2}^{0}$ V_{T} J 1/2 electron muon tau W boson neutrino neutrino neutrino 1402.7358, Chang et al, Leptophilic effective WIMPs

1411.1407, Kile, Kobach, Soni, Lepton-Flavored Dark Matter

1606.00072, Baek, Ko, PW Top-philic Scalar Dark Matter with a *Vector-like Fermionic Top Partner*

1501.02202, Kilic, Klimek, Yu. Signatures of Top Flavored Dark Matter

1404.1918, Gomez et al, Dark Matter on Top

> 1612.01643, Abe et al, Dark matter physics, flavor physics and LHC constraints in the dark matter model with a bottom partner

Model set-up

- DM: real scalar S
- Vector-like (VL) fermion ψ , $m_{\psi} > m_S$
 - (ψ, U_i) same quantum number
 - no chiral anomaly
- Z_2 parity: S, ψ are odd
 - no mixing $(S, H), (\psi, U_i)$
 - $Br\left(\psi \rightarrow SU_{i}^{(*)}\right) = 100\%$
 - free from LHC limits on VL (T, B)

$$\begin{aligned} \mathcal{L}_{\text{new}} &= \mathcal{L}_{\text{fermion}} + \mathcal{L}_{\text{scalar}} + \mathcal{L}_{\text{Yukawa}}, \\ \mathcal{L}_{\text{fermion}} &= \bar{\psi}(i\not\!\!D - m_{\psi})\psi, \\ \mathcal{L}_{\text{scalar}} &= \frac{1}{2}\partial^{\mu}S\partial_{\mu}S - \frac{1}{2}m_{S}^{2}S^{2} - \frac{1}{4!}\lambda_{S}S^{4} - \frac{1}{2}\lambda_{SH}S^{2}H^{2}, \\ \mathcal{L}_{\text{Yukawa}} &= -y_{1}S\overline{\psi_{L}}u_{R} - y_{2}S\overline{\psi_{L}}c_{R} - y_{3}S\overline{\psi_{L}}t_{R} + h.c., \end{aligned}$$

We consider $y_2, y_3 \gg y_1$, Heavy quark-philic

Model set-up

$$\mathcal{L} = \kappa_T \left\{ \sqrt{\frac{\zeta_i \xi_W^T}{\Gamma_W^0}} \frac{g}{\sqrt{2}} \begin{bmatrix} \bar{T}_L W^+_\mu \gamma^\mu d_L^i \end{bmatrix} + \sqrt{\frac{\zeta_i \xi_Z^T}{\Gamma_Z^0}} \frac{g}{2c_W} \begin{bmatrix} \bar{T}_L Z_\mu \gamma^\mu u_L^i \end{bmatrix} \right\}^{\text{Buchkremera et al, 13'}} Model Independent Framework for Searches of Top Partners} - \sqrt{\frac{\zeta_i \xi_H^T}{\Gamma_W^0}} \frac{M}{v} \begin{bmatrix} \bar{T}_R H u_L^i \end{bmatrix} - \sqrt{\frac{\zeta_3 \xi_H^T}{\Gamma_W^0}} \frac{m_t}{v} \begin{bmatrix} \bar{T}_L H t_R \end{bmatrix}} \right\}$$

- Z_2 parity: S, ψ are odd
 - no mixing $(S, H), (\psi, U_i)$
 - $Br\left(\psi \to SU_i^{(*)}\right) = 100\%$
 - free from LHC limits on VL (T, B)

$$\begin{aligned} \mathcal{L}_{\text{new}} &= \mathcal{L}_{\text{fermion}} + \mathcal{L}_{\text{scalar}} + \mathcal{L}_{\text{Yukawa}}, \\ \mathcal{L}_{\text{fermion}} &= \bar{\psi}(i\not\!\!D - m_{\psi})\psi, \\ \mathcal{L}_{\text{scalar}} &= \frac{1}{2}\partial^{\mu}S\partial_{\mu}S - \frac{1}{2}m_{S}^{2}S^{2} - \frac{1}{4!}\lambda_{S}S^{4} - \frac{1}{2}\lambda_{SH}S^{2}H^{2}, \\ \mathcal{L}_{\text{Yukawa}} &= -y_{1}S\overline{\psi_{L}}u_{R} - y_{2}S\overline{\psi_{L}}c_{R} - y_{3}S\overline{\psi_{L}}t_{R} + h.c., \end{aligned}$$

We consider $y_2, y_3 \gg y_1$, Heavy quark-philic

DM Annihilations: Thermal Relic, Indirect Detection

Thermal Relic Cross Section (Steigman et al. 2012)

8

 10^{3}

 $b\overline{b}$

 10^{4}

Top FCNC, exp. limit $< 10^{-(4 \sim 5)}$

Collider signals (ATLAS 36 fb^{-1} @ 13 TeV)

- $pp \rightarrow \psi \overline{\psi} \rightarrow SS + t/c + t/c$, i.e. $E_t^{miss} + t\overline{t}, jj, tj$
- ~ SUSY squark searches (3rd, 1st & 2nd gen.)

1808.07488, Chakraborty et al, Flavour-violating decays of mixed top-charm squarks at the LHC

DM-nucleon scattering

- Corrections to H.P. from VL portal
- heavy particles $\{\psi, t, h\}$ are integrated out at m_Z
- Down to ~ 1 GeV, RGE & {c,b} thrsh. effects included

Interplay: VLP & H.P.

$$\mathsf{P} \qquad \lambda_{SH}^{\text{ren.}} = \lambda_{SH} \left(1 + Fin. \left[\frac{1}{2} \delta Z_h + \delta Z_S + \delta v \right] \right) + Fin. [\lambda_{SH}^{1\text{PI}}]$$

$$\delta Z_S^{\text{new}} = -3 y_3^2 \frac{1}{16\pi^2} \left(m_t^2 B_0 + m_S^2 B_1 + A_0(m_\psi^2) \right)$$
$$\lambda_{SH}^{1\text{PI}} = -y_3^2 y_t \frac{m_t}{\sqrt{2}} \frac{1}{16\pi^2} \left(24(B_0 + m_h^2 C_1) + 6(m_h^2 + 4m_t^2)C_0 + 16(m_h^2 + 4m_S^2)C_2 \right)$$

 $B_{i} \equiv B_{i}(m_{S}^{2}; m_{t}^{2}, m_{\psi}^{2}),$ $C_{i} \equiv C_{i}(m_{h}^{2}, m_{S}^{2}, m_{S}^{2}; m_{t}^{2}, m_{t}^{2}, m_{\psi}^{2}),$

In the numerical calculations we impose modified minimal subtraction ($\overline{\text{MS}}$) scheme by choosing $\delta \lambda_{SH} = (...)\Delta$ to eliminate all $\overline{\Delta} = 1/\epsilon - \gamma_E + \ln 4\pi$ in $\lambda_{SH}^{\text{ren.}}$.

• Case-I:

$$\lambda_{SH} = 0,$$

$$\lambda_{SH}^{\text{ren.}} = \text{Fin.} \left[\lambda_{SH}^{1\text{PI}} \right]$$

• Case-II:

+ inverse loop rotations

$$\begin{split} \lambda_{SH} &= -\frac{\text{Fin.}\left[\lambda_{SH}^{1\text{PI}}\right]}{1 + \text{Fin.}\left[\frac{1}{2}\delta Z_h + \delta Z_S + \delta v\right]},\\ \lambda_{SH}^{\text{ren.}} &= 0. \end{split}$$

Interplay: VLP & H.P.

Combined results (color regions: excluded)

Summary

- We studied a real scalar DM S, coup. to $\{c_R, t_R\}$ via a vector-like fermion ψ .
- charm sector dominates in direct detection
 - for $m_S < \frac{m_t}{2}$, $y_2 = 1$ (3) excludes $m_{\psi} < 400$ (1000) GeV
 - for $y_{2,3} \sim O(1)$, thermal $m_S < m_t$ in tension with XENON-1T
- loop correction to H.P. λ_{SH} from VL portal
 - y_3 can adjust H.P. strength
- top FCNC Brs ~ 10^{-7} , below current limits ~ $10^{-(4\sim5)}$
 - future top measurements are valuable

Thank you for your attention

Back up

Other scenarios

