Searching for dark sector at LHC through "dark jet"

Beyond the BSM workshop

Mengchao Zhang Hotel Tenbo 2018-10-03

Based on : 1712.07279(Myeonghun Park, MZ)

Outline

1.Introduction

2. How to tag a "Dark Jet"

3.An example at LHC

4.Conclusion and outlook

Motivation:Dark sector might be complicated

1. The simplest WIMP model maybe not enough: null results, small scale problem(cusp-problem, $\sigma_8 \cdots$)

2.We need to consider other paradigm(SIMP, asymmetric DM), or a different DM, like a composite particle originated from dark sector confinement.

3. There are some popular NP models that can give you such DM candidate, Mirror World, Dark QCD, Hidden Valley…

These models look like...

Dark quark can be produced at collider through mediator particles. Once produced, dark parton => shower => hadronization => dark meson decay back to SM.

$$c\tau \approx 80 \mathrm{mm} \left(\frac{1}{\kappa^4}\right) \left(\frac{2\mathrm{GeV}}{f_{\pi_d}}\right)^2 \left(\frac{0.1\mathrm{GeV}}{m_q}\right)^2 \left(\frac{2\mathrm{GeV}}{m_{\pi_d}}\right) \left(\frac{m_X}{1TeV}\right)^4$$

This kind of jet looks like....

It's very, very model dependent. How long is lifetime of dark meson π_d , ρ_d ...? How much invisible particle inside a dark jet?

> Most dark mesons are stable or stable enough. Invisible Jet (Missing Energy)

> > Most dark mesons are long-lived. Emerging Jet (Displaced Track) JHEP **1505**, 059 (2015)

A fraction of dark mesons are stable. Semi-visible Jet (Transverse Mass) Phys. Rev. Lett. **115**, no. 17, 171804 (2015)

Most of dark mesons decay to visible particles promptly. "QCD-like" Dark Jet (What Can You Do?)

Outline

1.Introduction

2.How to tag a "Dark Jet", when it looks like a QCD Jet

3.An example at LHC

4. Conclusion and outlook

One example of one-prong jet tagging

Why are they different? Casimir Scaling

JHEP 1707, 091 (2017)

Strength of parton shower is controlled by this factor, so Gluon-Jet is broader than Quark-Jet, and there are more hadrons insider Gluon-Jet.

Their difference is decided by ratio C_A/C_F , it's called Casimir Scaling.

So for a Dark-Jet ...

We have a modified Casimir Scaling in Gluon/Dark Jet discrimination, C_A/C_F should be changed to $\alpha_S C_A/\alpha_d C_d$. So, if α_d is very different with α_S ...

Our dark sector setting

Our four benchmark setting. High confinement scale is required by short dark meson lifetime.

	N_d	$ n_f $	$\Lambda_d(GeV)$	$\tilde{m}_{q'}(GeV)$	$m_{\pi_d}(\text{GeV})$	$m_{ ho_d}({ m GeV})$	π_d Decay Mode	ρ_d Decay Mode
A	3	2	15	20	10	50	$\pi_d \to c\bar{c}$	$ ho_d ightarrow \pi_d \pi_d$
B	3	6	2	2	2	4.67	$\pi_d \to s\bar{s}$	$ ho_d ightarrow \pi_d \pi_d$
C	3	2	15	20	10	50	$\pi_d \rightarrow \gamma' \gamma'$ with	$ ho_d ightarrow \pi_d \pi_d$
							$m_{\gamma'} = 4.0 GeV$	
D	3	6	2	2	2	4.67	$\pi_d \rightarrow \gamma' \gamma'$ with	$ ho_d ightarrow \pi_d \pi_d$
							$m_{\gamma'} = 0.7 GeV$	

Running coupling of different setting.

Variable 1: two points energy correlation function $C_1^{(\beta)}$

Definition:
$$C_1^{(\beta)} = \sum_{i < j \in J} z_i z_j (R_{ij})^{\beta}$$

with
$$z_i = p_{T_i} / \sum_{i \in J} p_{T_i}$$
 and $R_{ij} = \sqrt{(\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2}$

Leading order re-summation result: Casimir Scaling $\frac{1}{\sigma} \frac{d\sigma}{dC_1^{(\beta)}} = \frac{d}{dC_1^{(\beta)}} \exp\left(-\int_{C_1^{(\beta)}}^{R_0^{\beta}} \frac{2\alpha C}{\pi\beta \tilde{C}} L(\tilde{C}) d\tilde{C}\right) = \frac{2\alpha C}{\pi\beta C_1^{(\beta)}} L(C_1^{(\beta)}) \exp\left(-\int_{C_1^{(\beta)}}^{R_0^{\beta}} \frac{2\alpha C}{\pi\beta \tilde{C}} L(\tilde{C}) d\tilde{C}\right)$ with

$$L(C_1^{(\beta)}) = \ln \frac{1 + \sqrt{1 - 4C_1^{(\beta)}/R_0^\beta}}{1 - \sqrt{1 - 4C_1^{(\beta)}/R_0^\beta}}$$

Variable 1: two points energy correlation function $C_1^{(\beta)}$

Meson level: parton level distribution convolute with a "shape function". And the mean value of shape function is proportional to Λ .

Dark meson decay: push up $C_1^{(\beta)}$ further: $z_1 z_2 \theta^\beta \to \frac{1}{4} (z_1 + z_2)^2 \left(\frac{m_{\pi_d}}{\overline{p_T}}\right)^\beta$ C_1^{β} distribution at different level for point B 0.14 parton level meson level 0.12 particle level detector level 0.10 0.08 ⁻robability 0.06 0.04 0.02 -0.00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 C_1^β

Variable 1: two points energy correlation function $C_1^{(\beta)}$

	N_d	n_f	$\Lambda_d(GeV)$	$\tilde{m}_{q'}(GeV)$	$m_{\pi_d}(\text{GeV})$	$m_{ ho_d}({ m GeV})$	π_d Decay Mode	ρ_d Decay Mode
A	3	2	15	20	10	50	$\pi_d ightarrow c \bar{c}$	$ ho_d ightarrow \pi_d \pi_d$
B	3	6	2	2	2	4.67	$\pi_d ightarrow s \bar{s}$	$ ho_d ightarrow \pi_d \pi_d$
C	3	2	15	20	10	50	$\pi_d \rightarrow \gamma' \gamma'$ with	$ ho_d ightarrow \pi_d \pi_d$
							$m_{\gamma'} = 4.0 GeV$	
D	3	6	2	2	2	4.67	$\pi_d \rightarrow \gamma' \gamma'$ with	$ ho_d ightarrow \pi_d \pi_d$
							$m_{\gamma'} = 0.7 GeV$	

Variable 2: Charged Track multiplicity

Performance

	N_d	$ n_f $	$\Lambda_d(GeV)$	$\tilde{m}_{q'}(GeV)$	$m_{\pi_d}(\text{GeV})$	$m_{ ho_d}({ m GeV})$	π_d Decay Mode	ρ_d Decay Mode
A	3	2	15	20	10	50	$\pi_d \to c \bar{c}$	$ ho_d ightarrow \pi_d \pi_d$
B	3	6	2	2	2	4.67	$\pi_d ightarrow s \bar{s}$	$ ho_d ightarrow \pi_d \pi_d$
C	3	2	15	20	10	50	$\pi_d \rightarrow \gamma' \gamma'$ with	$ ho_d ightarrow \pi_d \pi_d$
							$m_{\gamma'} = 4.0 GeV$	
D	3	6	2	2	2	4.67	$\pi_d \rightarrow \gamma' \gamma'$ with	$ ho_d ightarrow \pi_d \pi_d$
							$m_{\gamma'} = 0.7 GeV$	

Variable 3: E-ratio

Useful to some special final states, defined as:

	N_d	$ n_f $	$\Lambda_d(GeV)$	$\tilde{m}_{q'}(GeV)$	$m_{\pi_d}(\text{GeV})$	$m_{ ho_d}({ m GeV})$	π_d Decay Mode	ρ_d Decay Mode
A	3	2	15	20	10	50	$\pi_d \to c\bar{c}$	$ ho_d ightarrow \pi_d \pi_d$
B	3	6	2	2	2	4.67	$\pi_d ightarrow s \bar{s}$	$ ho_d ightarrow \pi_d \pi_d$
C	3	2	15	20	10	50	$\pi_d \rightarrow \gamma' \gamma'$ with	$ ho_d ightarrow \pi_d \pi_d$
							$m_{\gamma'} = 4.0 GeV$	
D	3	6	2	2	2	4.67	$\pi_d \rightarrow \gamma' \gamma'$ with	$ ho_d ightarrow \pi_d \pi_d$
							$m_{\gamma'}=0.7 GeV$	

Kaons inside dark jet B is very important

Multiple variables analysis

How to combine the discriminant ability of different variables? We use boosted decision tree(BDT).

BDT gives you a mapping from a set of variables to a BDT score:

 $\{var1, var2, var3, ...\} \rightarrow BDT$ score

Final discriminant performance

You can combine multiple variables to enhance the discriminant performance. Here we use boosted decision tree(BDT).

Combination of $C_1^{(\beta)}$, track Multi, and E-ratio is good enough.

Uncertainty estimation

You can only use Pythia8 to do Dark QCD simulation. So we rescale the renormalization scale in parton shower process to estimate the theoretical uncertainty.

Our result looks quite robust.

Outline

1.Introduction

2. How to tag a "Dark Jet"

3.An example at LHC

4. Conclusion and outlook

Tagging the QCD-like "Dark jet"

Our analysis ins based on ATLAS report: search for pair-produced resonances in 4-jets final state

- Events are required to have at least 4 jets with $p_{\rm T} > 120 {\rm GeV}$ and $|\eta| < 2.4$.
- These 4 jets are paired by minimizing $\Delta R_{\min} = \sum_{i=1,2} |\Delta R_i 1|$, with ΔR_i the angular distance between two jets in a pair.
- Define m_{avg} as the average of the invariant masses of these two jets pair as $m_{\text{avg}} = \frac{1}{2}(m_1 + m_2)$ with m_1 and m_2 are the invariant masses of two resonances. Discard events with large angular separation according to a resonant mass:

 $\Delta R_{\rm min} > -0.002 \times (m_{\rm avg}/{\rm GeV} - 225) + 0.72 \qquad \text{if } m_{\rm avg} < 225 {\rm GeV}$ $\Delta R_{\rm min} > +0.0013 \times (m_{\rm avg}/{\rm GeV} - 225) + 0.72 \qquad \text{if } m_{\rm avg} > 225 {\rm GeV}$

• Boosting the system of these two resonances (two jets pairs) to their centre-of-mass frame. $\cos \theta^*$ is defined as the cosine of the angle between one of the resonance and the beam-line in the centre-of-mass frame. The mass asymmetry \mathcal{A} is defined as:

$$\mathcal{A} = \frac{|m_1 - m_2|}{m_1 + m_2},\tag{4.2}$$

Events are cut by requiring $\mathcal{A} < 0.05$ and $|\cos \theta^*| < 0.3$. This cut defines the inclusive signal region (SR) selection.

This report only use $p_{\rm T}$, η , ϕ of jets. Let's do something more.

Tagging the QCD-like "Dark jet"

BDT score > 0.4 ==> Tagged as "Dark Jet"

Tagging the QCD-like "Dark jet"

	BKG	$M_X = 500 \text{GeV}$	$M_X = 700 \text{GeV}$	$M_X = 900 \text{GeV}$
Inclusive selection	154,750	360	82	22
Require 1 dark jet	$5,\!133$	163	55	16
Require 2 dark jets	162	49	16	6
Significance	-	2.38	0.78	0.29

Conclusion and outlook

Jet is not only (η, ϕ, p_T) , by looking inside a jet you can get more. Jetsubstructure have been used in boosted object tagging and quark/gluon jet discrimination.

In this work, we indicate that if a dark sector can produce jet-like signal at collider, then it is possible to show the property of dark sector by jetsubstructure directly.

Combination with cosmology will be more interesting:

Asymmetric Dark Matter: $\Omega_{DM}/\Omega_B \approx 5$

Confinement in Dark sector may trigger SFOPT, thus:

