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* In this talk: I'll imagine n~150 of Higgs bosons produced in a final state at
n lambda >> 1. Kinematically possible for scattering at E ~100 TeV

« HIGGSPLOSION: n-particle rates computed in a weakly-coupled theory
can become unsuppressed above certain critical values of n and E.

* will consider an intrinsically Non-perturbative — semiclassical set-up
n o s/moc 1/ > 1

e itincorporates correctly the tree-level results and
already known

the leading-order quantum effects = leading loops

v

In this talk:

* compute quantum effects in the large lambda n limit new



e.g.:Vector boson fusion in high-energy
pp collisions at ~100 TeV
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1->n processes of interest
| for Higgsplosion

n non-relativistic Higgses
Higgsplosion at/S«

Propagator with Higgspersion aty/ S«



Factorial growth of tree-level amplitudes at thresholds:
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prototype of the Higgs

2
A (h2 — ’02) in the unitary gauge

The classical equation for the spatially uniform field h(t),

d2h = —\h° + \?h,

has a closed-form solution with correct initial conditions hyy = v+ 2+ ...

ho(zo;t) =

o

1+20eimt/<2v>) m— VA

1 — zge™ /(2v)

ho(z) = v + 2v Z (2—7;)“ o z=2(t) = zge™
n=1

= n! (20)" Factorial growth
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Analytic continuation & singularities in complex time:

t — te=t+ir

1 + eim(t@—iToo)
ho(tc) = v (1 _ ez‘m(t@mo)> )
1 z
A o ~0
o= e (3;)
Our simple example of a classical solution
h(T)
v
1 + e—m(T—Too)
ho(r) = v (1 — em(TToo)> Too
—
Such solutions will emerge in the semiclassical approach |



Main idea of the semiclassical approach

R, (FE) is the probability rate for a local operator O(0) to create n particles of
total energy F from the vacuum,

1
Ro(E) — / i, (00" 5" Peln){n| P S 00

Pg is the projection operator on states with fixed energy E.
O = MO
and the limit 7 — 0 is taken in the computation of the probability rates,

1 . .
Ro(E) = lim | —d®, (0]e/MOT St Poln)in| P S el ™ |0) .
i—=0 | n!

Note: non-dynamical (non-propagating) initial state O|0).

The semi-classical (steepest descent) limit: _ E-nm
nm

A—0, n—o00, with An =fixed, e = fixed.

Evaluate the path integral in this double-scaling limit.
Rubakov & Tinyakov: DT Son 95 n enters via the coherent state formalism.



Main idea of the semiclassical approach

Note:

The initial state is not a semiclassical, it contains few
(1 or 2) rather than many particles.

Son argued that it can be approximated in the semiclassical method by
a certain local operator acting on the vacuum:

[ X) = 0(0)]0)
O(z) = j Lel?®)

j is a constant j = ¢/A. Finally one takes the limit ¢ — 0 (or equivalently ;7 — 0)

A refinement:

operator localized in the vicinity of a point x

O,() = / '’ 9o — x) O(x), X) = 0,(0)0) = / 24’ g(a') O(a') [0)



The Semiclassical formalism of Son: results in four steps

1. Solve the classical equation without the source-term:

6.5
oh(x)

= 0

a complex-valued solution h(x) with a point-like singularity at x* = 0.
The singularity is due to O(x = 0).

2. Impose the initial and final-time boundary conditions:

lim h(x) +/ L S
1111 X = U K
t—— 00 (27’(’)3/2 \/2&)1{ k
d>k 1 . .
. L wxT—0 —ik,x" T ikt
tlgrnoo h(z) = v+ / CEENE (bke e + b e )

e Son hep-ph/055338



The Semiclassical formalism of Son: results in four steps

3. Compute E and n of the final state using the ¢t — +o00 asymptotics
E = / Pk we bl b e T=0 n = / A3k bl by ewxT—0

At t — —oo the energy and the particle number are vanishing.
The energy changes discontinuously from 0 to £ at the singularity at ¢ = O.

4. Eliminate the T' and 6 parameters in favour of E and n.
Finally, compute the function W (E, n)

W(E,n) = ET — nf — 2ImS|h|

on the set {h(x), T, 0} and fine the semiclassical rate R,,(E) = exp [W(E,n)]

e Son hep-ph/055338



Refining the method in complex time

—

e In the Euclidean space-time, (7,Z) the solution will be singular a 3-
dimensional hypersurface 7 = 7¢(x) located at t = 0.
T N

Singularity surface
hl (:E) Y hg (CIJ‘)

E—;t

time evolution U
contour 70(T)

e Find a classical trajectory hy(7,Z) on the first segment 400 > 7 > 7¢(T)

e Find another classical solution hs(7,Z) on the remaining part of the con-
tour that at 7 — 79(Z) is singular and hs (79, Z) = h1(70, Z).



e For the combined configuration h(z) to solve classical equations every-
where, including the 7 surface:

need to extremize the action integral over all singularity surfaces 7 = 74(Z)

containing the point t =0 = .
L / dtﬁ(h2)>
0

To(f)
iS[h] = /de (/ d7 Lxuc(h1)

+ o0
A

0
/ 07 Liser (o)

0 ()

ha(10(Z)) = ha(10(Z)) N

Extremize the action S over
all such singularity surfaces:




Computing the semiclassical rate

Classical solution singular on a generic tau_0 surfaces:

h(tc,Z) = v ( ) + Q/Nﬁ(t(c,a_f)

1 — e’im(t@—’iToo)
Find that:

W(E,n) = ET — nf — 2ReSgualh]

A 3 3
= n log—n v 2 log—ﬂ +1) — 2nm 75 — 2ReSgucl|h]
4 2 €
< > < >
W (E, n)tee AT} Quant
agrees with the known result need to compute by extremizing

of tree-level contributions ' w.r.t tau_0(x)



Computing the semiclassical rate

AWt — - 9nm 1. — 2Re S]glugl)
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Mechanical analogy: surface at equilibrium/balance of forces



Computing the semiclassical rate

Use thin wall approximation:

1 quant | A 3
§AW stationary — /R p(E) dr + ?/’LR ; E =nm
final result 3/2
E°r= 2 1(5/4 1 2 I'(5/4
AWyauant — 2T(5/4) _ ~ (An)3/? (5/4) ~ 0.854nVAn
Vi 3T(3/4) ~ V3 T(3/4)
E‘Too‘ R E‘TOO‘
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Summary of the main result

A—0, n—=oo, with An=fixed>1, e=fixed K1

A A 2
Ro(E) = W EN — exp [—” (log—n +0.85VAn — 1+ §(1<)gi + 1) _ —55>]

A 4 2 3T 12
A A '
> EM=205s | . E/m=(1+¢)n
e : :
E/M=200 positive negative
100y ! (quantum effects) (phase space)
E/M=195

A

0.01

. E/M=190

Can always make this term win =>
e e w0 s unsuppressed R at high Energies

Higher order corrections are suppressed by extra powers of
A— 0and 1/n — 0 and by O(1/vAn) as well as by O(e).
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Conclusions:

The semiclassical calculation reviewed in the talk was aimed towards

developing a theoretical foundation for the mechanism of Higgsplosion
)

p? —m? — ReXgr(p?) + imI(p?) + ic

Agr(p) =

R <n Higgsplosion

Loop integrals are effectively cut off at E, by the exploding width I'(p?) of the
propagating state into the high-multiplicity final states.

The incoming highly energetic state decays rapidly into the multi-particle state
made out of soft quanta with momenta k¥ ~ m? << EZ.

The width of the propagating degree of freedom becomes much greater than its
mass: it is no longer a simple particle state.

In this sense, it has become a composite state made out of the n soft particle

quanta of the same field ¢.
e VVK & Spannowsky 1704.03447, 1707.01531
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