`Ikaho Onsen Workshop’

Semiclassical Higgsplosion

Valya Khoze

IPPP Durham

- VVK \& Spannowsky 1704.03447, 1707.01531, 1809.11141
- VVK 1806.05648
- VVK, Reiness, Spannowsky, Waite 1709.08655
- In this talk: l'll imagine $n \sim 150$ of Higgs bosons produced in a final state at n lambda >> 1 . Kinematically possible for scattering at $\mathrm{E} \sim 100 \mathrm{TeV}$
- HIGGSPLOSION: n-particle rates computed in a weakly-coupled theory can become unsuppressed above certain critical values of n and E.
- will consider an intrinsically Non-perturbative - semiclassical set-up $n \propto \sqrt{s} / m \propto 1 / \lambda \gg 1$
- it incorporates correctly the tree-level results and
- the leading-order quantum effects = leading loops In this talk:
- compute quantum effects in the large lambda n limit

1->n processes of interest

e.g.:Vector boson fusion in high-energy pp collisions at $\sim 100 \mathrm{TeV}$

for Higgsplosion

n non-relativistic Higgses Higgsplosion at $\sqrt{s_{*}}$

Propagator with Higgspersion at $\sqrt{s_{*}}$

- VVK \& Spannowsky 1704.03447,1707.01531

Factorial growth of tree-level amplitudes at thresholds:

$$
\mathcal{L}=\frac{1}{2} \partial^{\mu} h \partial_{\mu} h-\frac{\lambda}{4}\left(h^{2}-v^{2}\right)^{2}
$$

prototype of the Higgs
in the unitary gauge

The classical equation for the spatially uniform field $h(t)$,

$$
d_{t}^{2} h=-\lambda h^{3}+\lambda v^{2} h
$$

has a closed-form solution with correct initial conditions $h_{\mathrm{cl}}=v+z+\ldots$

$$
h_{0}\left(z_{0} ; t\right)=v\left(\frac{1+z_{0} e^{i m t} /(2 v)}{1-z_{0} e^{i m t} /(2 v)}\right), \quad m=\sqrt{2 \lambda} v
$$

$$
h_{0}(z)=v+2 v \sum_{n=1}^{\infty}\left(\frac{z}{2 v}\right)^{n}, \quad z=z(t)=z_{0} e^{i m t}
$$

$$
\mathcal{A}_{1 \rightarrow n}=\left.\left(\frac{\partial}{\partial z}\right)^{n} h_{\mathrm{cl}}\right|_{z=0}=n!(2 v)^{1-n}
$$

Factorial growth
L. Brown 9209203

Analytic continuation \& singularities in complex time:

$$
t \longrightarrow t_{\mathbb{C}}=t+i \tau
$$

$$
h_{0}\left(t_{\mathbb{C}}\right)=v\left(\frac{1+e^{i m\left(t_{\mathbb{C}}-i \tau_{\infty}\right)}}{1-e^{i m\left(t_{\mathbb{C}}-i \tau_{\infty}\right)}}\right)
$$

$$
\tau_{\infty}:=\frac{1}{m} \log \left(\frac{z_{0}}{2 v}\right)
$$

Our simple example of a classical solution

$$
h_{0}(\tau)=v\left(\frac{1+e^{-m\left(\tau-\tau_{\infty}\right)}}{1-e^{-m\left(\tau-\tau_{\infty}\right)}}\right)
$$

Such solutions will emerge in the semiclassical approach

Main idea of the semiclassical approach

$\mathcal{R}_{n}(E)$ is the probability rate for a local operator $\mathcal{O}(0)$ to create n particles of total energy E from the vacuum,

$$
\mathcal{R}_{n}(E)=\int \frac{1}{n!} d \Phi_{n}\langle 0| \mathcal{O}^{\dagger} S^{\dagger} P_{E}|n\rangle\langle n| P_{E} S \mathcal{O}|0\rangle
$$

P_{E} is the projection operator on states with fixed energy E.

$$
\mathcal{O}=e^{j h(0)},
$$

and the limit $j \rightarrow 0$ is taken in the computation of the probability rates,

$$
\mathcal{R}_{n}(E)=\lim _{j \rightarrow 0} \int \frac{1}{n!} d \Phi_{n}\langle 0| e^{j h(0)^{\dagger}} S^{\dagger} P_{E}|n\rangle\langle n| P_{E} S e^{j h(0)}|0\rangle
$$

Note: non-dynamical (non-propagating) initial state $\mathcal{O}|0\rangle$. The semi-classical (steepest descent) limit:

$$
\varepsilon=\frac{E-n m}{n m}
$$

$$
\lambda \rightarrow 0, \quad n \rightarrow \infty, \quad \text { with } \quad \lambda n=\text { fixed }, \quad \varepsilon=\text { fixed }
$$

Evaluate the path integral in this double-scaling limit.

Main idea of the semiclassical approach

Note:

The initial state is not a semiclassical, it contains few
(1 or 2) rather than many particles.
Son argued that it can be approximated in the semiclassical method by a certain local operator acting on the vacuum:

$$
|X\rangle=\mathcal{O}(0)|0\rangle
$$

$$
\mathcal{O}(x)=j^{-1} e^{j \phi(x)}
$$

j is a constant $j=c / \lambda$. Finally one takes the limit $c \rightarrow 0$ (or equivalently $j \rightarrow 0$)
A refinement:
operator localized in the vicinity of a point x

$$
\mathcal{O}_{g}(x)=\int d^{4} x^{\prime} g\left(x^{\prime}-x\right) \mathcal{O}\left(x^{\prime}\right), \quad|X\rangle=\mathcal{O}_{g}(0)|0\rangle=\int d^{4} x^{\prime} g\left(x^{\prime}\right) \mathcal{O}\left(x^{\prime}\right)|0\rangle
$$

The Semiclassical formalism of Son: results in four steps

1. Solve the classical equation without the source-term:

$$
\frac{\delta S}{\delta h(x)}=0
$$

a complex-valued solution $h(x)$ with a point-like singularity at $x^{\mu}=0$. The singularity is due to $\mathcal{O}(x=0)$.
2. Impose the initial and final-time boundary conditions:

$$
\begin{aligned}
\lim _{t \rightarrow-\infty} h(x) & =v+\int \frac{d^{3} k}{(2 \pi)^{3 / 2}} \frac{1}{\sqrt{2 \omega_{\mathbf{k}}}} a_{\mathbf{k}}^{\dagger} e^{i k_{\mu} x^{\mu}} \\
\lim _{t \rightarrow+\infty} h(x) & =v+\int \frac{d^{3} k}{(2 \pi)^{3 / 2}} \frac{1}{\sqrt{2 \omega_{\mathbf{k}}}}\left(b_{\mathbf{k}} e^{\omega_{\mathbf{k}} T-\theta} e^{-i k_{\mu} x^{\mu}}+b_{\mathbf{k}}^{\dagger} e^{i k_{\mu} x^{\mu}}\right)
\end{aligned}
$$

- Son hep-ph/055338

The Semiclassical formalism of Son: results in four steps

3. Compute E and n of the final state using the $t \rightarrow+\infty$ asymptotics

$$
E=\int d^{3} k \omega_{\mathbf{k}} b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} e^{\omega_{\mathbf{k}} T-\theta}, \quad n=\int d^{3} k b_{\mathbf{k}}^{\dagger} b_{\mathbf{k}} e^{\omega_{\mathbf{k}} T-\theta}
$$

At $t \rightarrow-\infty$ the energy and the particle number are vanishing. The energy changes discontinuously from 0 to E at the singularity at $t=0$.
4. Eliminate the T and θ parameters in favour of E and n. Finally, compute the function $W(E, n)$

$$
W(E, n)=E T-n \theta-2 \operatorname{Im} S[h]
$$

on the set $\{h(x), T, \theta\}$ and fine the semiclassical rate $\mathcal{R}_{n}(E)=\exp [W(E, n)]$

- Son hep-ph/055338

Refining the method in complex time

- In the Euclidean space-time, (τ, \vec{x}) the solution will be singular a 3dimensional hypersurface $\tau=\tau_{0}(\vec{x})$ located at $t=0$.

- Find a classical trajectory $h_{1}(\tau, \vec{x})$ on the first segment $+\infty>\tau>\tau_{0}(\vec{x})$
- Find another classical solution $h_{2}(\tau, \vec{x})$ on the remaining part of the contour that at $\tau \rightarrow \tau_{0}(\vec{x})$ is singular and $h_{2}\left(\tau_{0}, \vec{x}\right)=h_{1}\left(\tau_{0}, \vec{x}\right)$.
- For the combined configuration $h(x)$ to solve classical equations everywhere, including the τ_{0} surface:
need to extremize the action integral over all singularity surfaces $\tau=\tau_{0}(\vec{x})$ containing the point $t=0=\vec{x}$.
$i S[h]=\int d^{3} x\left(\left|\int_{+\infty}^{\tau_{0}(\vec{x})} d \tau \mathcal{L}_{\text {Eucl }}\left(h_{1}\right)\right|-\left|\int_{\tau_{0}(\vec{x})}^{0} d \tau \mathcal{L}_{\text {Eucl }}\left(h_{2}\right)\right|+i \int_{0}^{\infty} d t \mathcal{L}\left(h_{2}\right)\right)$

$$
h_{1}\left(\tau_{0}(\vec{x})\right)=h_{2}\left(\tau_{0}(\vec{x})\right)
$$

$$
\tau
$$

Extremize the action S over all such singularity surfaces:

$$
\tau_{0}(\vec{x})
$$

Computing the semiclassical rate

Classical solution singular on a generic tau_0 surfaces:

$$
h\left(t_{\mathbb{C}}, \vec{x}\right)=v\left(\frac{1+e^{i m\left(t_{\mathbb{C}}-i \tau_{\infty}\right)}}{1-e^{i m\left(t_{\mathbb{C}}-i \tau_{\infty}\right)}}\right)+\tilde{\phi}\left(t_{\mathbb{C}}, \vec{x}\right)
$$

Find that:
$W(E, n)=E T-n \theta-2 \operatorname{Re} S_{\text {Eucl }}[h]$
$=n \log \frac{\lambda n}{4}+\frac{3 n}{2}\left(\log \frac{3 \pi}{\varepsilon}+1\right)-2 n m \tau_{\infty}-2 \operatorname{Re} S_{\mathrm{Eucl}}[h]$

$W(E, n)^{\text {tree }}$
agrees with the known result of tree-level contributions
w.r.t tau_O(x)

Computing the semiclassical rate

$$
\begin{aligned}
& \qquad \begin{aligned}
& \Delta W^{\text {quant }}=-2 n m \tau_{\infty}-2 \operatorname{Re} S_{\mathrm{Eucl}}^{(1,2)} \\
&=2 n m\left|\tau_{\infty}\right|+2 \int d^{3} x\left[\int_{\tau_{0}(\vec{x})}^{+\infty} d \tau \mathcal{L}_{\mathrm{Eucl}}\left(h_{1}\right)-\int_{\tau_{0}(\vec{x})}^{0} d \tau \mathcal{L}_{\mathrm{Eucl}}\left(h_{2}\right)\right] \\
& \text { Force } \times \text { height } \mathrm{E}=0 \text { configuration } \\
& \text { E=mn configuration }
\end{aligned}
\end{aligned}
$$

| $\substack{\text { Surface-energy }}$ | $\frac{1}{2} \Delta W^{\text {quant }}=n m\left\|\tau_{\infty}\right\|-\underbrace{\int_{A+i \epsilon}^{0+i \epsilon} d \tau L_{\mathrm{Eucl}}\left(h_{2} ; \tau_{0}(\vec{x})\right)}_{\equiv S_{\text {Eucl }}\left[\tau_{0}(\vec{x})\right]}+\frac{4 \pi}{3} \mu R^{3}$ |
| :---: | :---: | :---: |
| Force \times height | |
| Surface-energy | |

Mechanical analogy: surface at equilibrium/balance of forces

Computing the semiclassical rate

Use thin wall approximation:

$$
\frac{1}{2} \Delta W_{\text {stationary }}^{\text {quant }}=-\int_{R}^{0} p(E) d r+\frac{4 \pi}{3} \mu R^{3}, \quad E=n m
$$

$$
\Delta W^{\text {quant }}=\frac{E^{3 / 2}}{\sqrt{\mu}} \frac{2}{3} \frac{\Gamma(5 / 4)}{\Gamma(3 / 4)}=\frac{1}{\lambda}(\lambda n)^{3 / 2} \frac{2}{\sqrt{3}} \frac{\Gamma(5 / 4)}{\Gamma(3 / 4)} \simeq 0.854 n \sqrt{\lambda n}
$$

Summary of the main result

$$
\lambda \rightarrow 0, \quad n \rightarrow \infty, \quad \text { with } \quad \lambda n=\text { fixed } \gg 1, \quad \varepsilon=\text { fixed } \ll 1
$$

$$
\mathcal{R}_{n}(E)=e^{W(E, n)}=\exp \left[\frac{\lambda n}{\lambda}\left(\log \frac{\lambda n}{4}+0.85 \sqrt{\lambda n}-1+\frac{3}{2}\left(\log \frac{\varepsilon}{3 \pi}+1\right)-\frac{25}{12} \varepsilon\right)\right]
$$

positive negative
(quantum effects) (phase space)
$E / m=(1+\varepsilon) n$

Can always make this term win => unsuppressed \mathbf{R} at high Energies

Higher order corrections are suppressed by extra powers of $\lambda \rightarrow 0$ and $1 / n \rightarrow 0$ and by $\mathcal{O}(1 / \sqrt{\lambda n})$ as well as by $\mathcal{O}(\varepsilon)$.

Conclusions:

- The semiclassical calculation reviewed in the talk was aimed towards developing a theoretical foundation for the mechanism of Higgsplosion
- $\Delta_{R}(p)=\frac{i}{p^{2}-m^{2}-\operatorname{Re} \Sigma_{R}\left(p^{2}\right)+i m \Gamma\left(p^{2}\right)+i \epsilon}$

$$
\text { R } 4 \cdots \cdots \cdots \text { Higgsplosion }
$$

Loop integrals are effectively cut off at E_{*} by the exploding width $\Gamma\left(p^{2}\right)$ of the propagating state into the high-multiplicity final states.

The incoming highly energetic state decays rapidly into the multi-particle state made out of soft quanta with momenta $k_{i}^{2} \sim m^{2} \lll E_{*}^{2}$.

The width of the propagating degree of freedom becomes much greater than its mass: it is no longer a simple particle state.

In this sense, it has become a composite state made out of the n soft particle quanta of the same field ϕ.

- VVK \& Spannowsky 1704.03447, 1707.01531

