

大阪大学 OSAKA UNIVERSITY

PD 2018, Tokyo, Japan 27th Nov.

Upgrade of the Csl calorimeter for the KOTO experiment Osaka University for the KOTO collaboration

New outer wear of the calorimeter

Summer

Now

KOTO experiment

Detector

Signal: 2γ + nothing

Two electromagnetic showers in CsI and no signal in the hermetic veto counters

Key: avoid missing photons and exclude neutron-induced BG

→ Upgrade CsI calorimeter to reject neutrons

 π^{0}

 K_L

Csl calorimeter of the KOTO detector

- CsI crystal
 - undoped CsI
 #crystal = 2716
 2240 small (25 × 25 mm²)
 476 large (50 × 50 mm²)

Good performance of resolution

• $\sigma_E/E = 0.99\% \oplus 1.74\%/\sqrt{E[\text{GeV}]}$

JPS Conf. Proc. 8, 024007 (2015)

- PMT signals are digitized by flash ADC
 - 14 bit 125 MHz sampling
 - 512 ns timing window (64 samples)
 - Timing resolution $\sigma_t \sim 1$ ns

Measure the depth as $\Delta t \equiv T_{MPPC} - T_{PMT}$

 \rightarrow Small Δt implies γ

New front-end readout

MPPC readout # of MPPCs: 4096 (>#PMT=#Csl)

To reduce # of channels.. <u>4 MPPCs</u> are connected

Bias connection

"Hybrid" bias connection

- adopted by MEG II upgrade
- AC line: series
- DC line: parallel

Development of front-end: amplifier

Effect of the Irradiation

Dark current

Increases × 100 for

- $\sim 1 \times 10^9$ 1MeV- $n/{
 m cm}^2$ (3-years operation)
- Prepare irradiated sample of MPPCs

Instability of bias voltage

Position dependence of different I(V)causes instability of bias for the series connection.

ightarrow Solved by adopting the Hybrid connection

Performance tests (γ/n separation)

collimator

Beam test at RCNP-Osaka cyclotron

γ: continuous beamup to 392 MeV

n: 392 MeV

15cm

Csl

9

Distribution $\Delta t \equiv T_{MPPC} - T_{PMT}$

Retain 90% of γ while suppressing n to 34%

Performance tests ($\sigma_{\Delta t}$)

- Beam test at the ELPH (Tohoku, Japan) electron synchrotron
 - evaluate $\sigma_{\Delta t}$ (as a func. of E)
 - Monochromatic 200, 400, 600, 800 MeV e^+ beams
 - Used setup as realistic as possible
 - Confirmed MPPC functionality after dose
 →Irradiated MPPCs were used

summed 100 × 100 mm² region

- Irradiated MPPCs worked enough
- ✓ Readout worked well

MPPC installation

MPPC instrumentation

MPPC instrumentation

- Glue MPPCs on two rows in a day
 Start from 1st Oct. and 45 days to finish all
- **D** No serious problem occurred

13 Time lapse movie

Cosmic ray test

Construct 12 plastic scintillators to...

- evaluate $z-\Delta t$ dependence using cosmic rays.
- find dead channels

Functionality of measurement of depth

Understand individualities of crystals

Summary and plan

- □ KOTO collaboration aims to search for New Physics via very rare decay $K_L \rightarrow \pi^0 \nu \bar{\nu}$, $\mathcal{B}_{SM} = (3.0 \pm 0.3) \times 10^{-11}$.
- □ In the last autumn, we attached >4000 MPPCs on the front surface of CsI crystal to improve γ/n separation power:
- In the next March, we will start physics data taking and • obtain calibration data ($K_L \rightarrow 3\pi^0$ and neutron rich sample), • develop new discriminator to reject neutrons

That's all

Thank you!

$K \rightarrow \pi \nu \bar{\nu} \text{ decay}$

■ Suppressed by FCNC in the SM ■ Small QCD uncertainty • useful prove to the New Physics ■ Two compatible processes • $K^+ \rightarrow \pi^+ \nu \bar{\nu}$: $\mathcal{A} \propto |V_{td}|$ • $K_L \rightarrow \pi^0 \nu \bar{\nu}$: $\mathcal{A} \propto \text{Im}V_{td}$

EXP

 $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) < 2.6 \times 10^{-8} \text{ (90\% C.L.) E391a}$ $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = 17.3^{+11.5}_{-10.5} \times 10^{-9} \text{ E949}$

SM prediction

$$\begin{aligned} \mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) &= (3.0 \pm 0.3) \times 10^{-11} \\ \mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) &= (9.11 \pm 0.72) \times 10^{-11} \end{aligned}$$

JHEP**11** 033 (2015).

Rejection of neutron BG

Halo-neutron BG

* Prog. Theor. Exp. Phys. (2017) 021C01

Result of 4 days run: $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) < 5.1 \times 10^{-8}$ (90% C.L.)^{*}

Background source	Number of events
$K_L \rightarrow 2\pi^0$	0.047 ± 0.033
$K_L o \pi^+ \pi^- \pi^0$	0.002 ± 0.002
$K_L \rightarrow 2\gamma$	0.030 ± 0.018
Pileup of accidental hits	0.014 ± 0.014
Other K_L background	0.010 ± 0.005
Halo neutrons hitting NCC	0.056 ± 0.056
Halo neutrons hitting the calorimeter	0.18 ± 0.15
Total	0.34 ± 0.16

The largest contribution from BG

 We need 3 more magnitudes of suppression two-dimensional shower envelope → 1/10 ✓ done
 Pulse shape likelihood → 1/10 ✓ done

measure shower development (in z) in the calorimeter $\rightarrow O(1/10)$

Performance tests (γ/n separation)

MC evaluation of performance for halo neutron events, based on the result of beam test

Taking into account...

1 Correlation of two cluster position:

• the second cluster is deeper

20

Halo n

The larger one $\rightarrow \Delta t_{max}$ The smaller one $\rightarrow \Delta t_{min}$

2 Other neutron cuts

Suppresses halo neutron BG to 10% while retaining 90% efficiency of two γ signal events!

Quality assurance of MPPCs

Soldering

temperature test

I/V inspection LED test

Inspect all of MPPCs (#~4000) before installation → Start gluing on CsI in this summer

Development of front-end: monitor

I(V

52

53

54

55

56 Voltage[V]

0.5

51

DC dark current is continuously monitored to confirm the functionality and level of radiation damage.

Operation current increases by a factor of 100 in three snowmass year: $I_{op} = 0.5\mu A \rightarrow 50\mu A$

22

Development of front-end

- voltage toward irradiation
- ☺ large time constant (~0.5us) ☺ low bias voltage (55V) stable breakdown voltage
 - toward irradiation

adopted by Meg2 upgrade

Gluing of MPPC on the CsI surface

Difficulties to glue MPPC

- Concave shape of MPPC
- Epoxy glue does not cure well on CsI surface
- bubbles appear at low temperature

24

Fabrication of MPPCs

To keep the internal pressure high...

after silicone is cured, apply pressure and dispense epoxy glue along edges

For more detail, see the backup.

Fabrication of MPPCs

I/V inspection of MPPCs

OPAMP →FET input(high impedance) Gain 100

Basic design

- 16ch are chosen by MUX
- DC voltage is buffered by voltage follower after the MUX

Front-end board 1/3 (top)

IC socket

IC socket is used as a connector