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Introduction

New detectors for the upgrade of the LHC experiments (CMS, LHCB) demand to operate SiPMs up to
fluences of 1012 + 104 particles/cm?. Application of SiPMs in this experiments requires understanding of
the effects caused by different types of irradiation on SiPM parameters. This review is an attempt to
summarize the current knowledge of radiation damage of SiPMs.



Radiation induced damage in silicon



Radiation induced damage in Silicon
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Radiation induced damage in Silicon: dark current increase

n-type FZ - 7 to 25 KQcm
n-type FZ - 7 KQcm
n-type FZ - 4 KQcm
n-type FZ - 3 KQcm
p-type EPI - 2 and 4 KQcm

Dark current increase is proportional to the neutron
fluence and depleted volume of silicon in a wide
range of fluences (10! + 10%):
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Radiation induced damage in Silicon: dark current annealing
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High temperature can
significantly speed up process
of dark current annealing in
irradiated silicon devices

(M. Moll, Radiation damage in silicon particle detectors,
Ph.D. thesis, Hamburg U. (1999) and references there in)



Radiation induced damage in Silicon: doping concentration change
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(M. Moll, Radiation damage in silicon particle detectors,
Ph.D. thesis, Hamburg U. (1999) and references there in)

Figure 5.21: Dependence of N.;; on the accumulated 1 MeV neutron equivalent flu-
ence ¢, for standard and orygen enriched I'Z silicon irradiated with reactor neutrons
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Radiation damage effects in SiPMs
(hadrons)



Single cell DCR, s™

The dark count rate of individual cells of a Philips DSiPM as a function

of total accumulated dose.
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Number of protons

Barnyakov et. all have investigated the radiation
damage of digital SiPMs exposed to 800 MeV
protons. In a digitalSiPM, the DCR of every
individual cell can be monitored separately. The
step-like increase of the DCR indicates that a single
interaction of a proton with a Si atom may result in
a drastic DCR increase and that the increase may
differ by orders of magnitude for each proton
interaction. Most likely this effect is linked to the
formation of cluster-like defects in one pixel.

SiPMs help to understand radiation induced
defects in silicon!

(M. Yu. Barnyakov et. all, NIM A824 (2016) 83)

Musienko et all., PD18, Tokyo, Japan
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Using IR light emission to study neutron irradiated SiPMs

1E+03

o 1E+02 €

zm Mé Light intensity images for a non-irradiated (a) and a neutron irradiated
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Dark current increase with neutron fluence for Hamamatsu
S$13360-6050CS MPPC (dVB=3.0 V)
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Dark current vs. exposure to neutrons (E,,~1 MeV) for different SiPMs

New Hamamatsu MPPCs (bias non-corrected, R =3 kOhm)
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(Yu. Musienko, A. Heering, NDIP-2011, Lyon, France)

Thickness of the epi-layer for most of SiPMs is in the range of 1-2 um,
however d . ~ 4+ 50 um for different SiPMs. High electric field
effects (such as phonon assisted tunneling and field enhanced

generation (Pool-Frenkel effect) play significant role in the origin of
SiPM’s dark noise.

28/11/2018 Musienko et all., PD18, Tokyo, Japan

High energy neutrons/protons produce silicon
defects which cause an increase in dark count and
leakage current in SiPMs:

|~ *DFVEM*K,

o — dark current damage constant [A/cm];
@ — particle flux [1/cm?];

V — “effective” silicon volume [cm?3]

M —SiPM gain

k — NIEL coefficient

o ~4*1017 A*cm after 80 min annealing at T=60
°C (measured at T=20 °C)

Damage produced by 40 neutrons (1 MeV) in 1 um
thick Si = 1 dark count/sec at 20 °C

V¥S*G* degp

S- area

G; - “effective” geometric factor
d.s - “effective” thickness
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SiPM radiation damage by neutrons: signal reduction

Radiation may cause:

e Fatal SiPMs damage (SiPMs are broken
and can’t be used after certain absorbed

dose)
e Dark current and dark count increase
(silicon ...)

e Change of the gain and PDE vs. voltage
dependence (SiPM cell “blocking” effects
due to high induced dark carriers
generation-recombination rate)

e Breakdown voltage increase, PDE, Gain
reduction due to donor/acceptor
concentration change

Relative response to LED pulse vs. exposure to

neutrons (E.,~1 MeV) for different SiPMs

LED amplitude (normalized to 0 dose)

LED vs. Flux (R_=3 kOhm, no bias correction, non-annealed)
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® MPPC, 1 mm”2, 2500 cells
* MPPC, 1 mm*2, 1600 cells
+ MPPC, 1 mm”2, 400 cells
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(Yu. Musienko, A. Heering, NDIP-2011, Lyon, France)

1E+13

SiPMs with high cell density and fast recovery time can operate up to 3*10!2 neutrons/cm? (gain change is< 25%).

28/11/2018

Musienko et all., PD18, Tokyo, Japan
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Dependence of the SiPM dark current on the
temperature (after irradiation)

_ MPPC, 1 mm?, after 1*102 n/cm? Relative DC vs. T after irradiation (~10'2 n/cm?)
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Radiation damage effects in SiPMs
(X-rays and gammas)




“Early” SiPMs under Co-60 gamma ray irradiation

Infrared pictures of a new sample and the
irradiated with 240 Gy dose. Infrared light is
emitted due to heat produced by high leakage
current (red points).

Matsubara and co-authors in have irradiated a prototype
SiPM from Hamamatsu (Type No. T2K-11-100C) under bias
up to 240 Gy of 60-Co y-rays and measured the dark
current, dark-count rate, gain, and cross talk. Whereas gain
and cross talk did not significantly change with dose, large
dark count pulses and localized spots with leakage current
along the outer edge of the active region and the bias lines
were observed for about half an hour after irradiation for
doses above 200 Gy

T. Matsubara, H. Tanaka, K. Nitta, M. Kuze, Radiation damage of MPPC
by gamma-ray irradiation with Co-60, PoS PDO07 (2007) 032.
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Effects of X-rays irradiation on recent SiPMs
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Fig. 6. Reverse currents of SiPMs as a function of voltage before, and after irradiation with X-rays to 200 Gy 20 kGy, 2 MGy, and 20 MGy (a) below the breakdown voltage,
and (b) in the region of and above the breakdown voltage.

The X-ray irradiations up to 20 kGy were performed at an X-ray tube (PW 2273/20 from PANalytical). The X-ray irradiations
to 2 MGy and 20 MGy were performed with X-rays of 8 keV in the P11 beam line of PETRA III.

28/11/2018
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(C. Xu, R. Klanner, E. Garutti, W.-L. Hellweg, NIM A762 (2014) 149)
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Dark-count and X-talk vs. dVB after X-ray irradiation
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Fig. 15. Cross-talk probability for several SiPMs as a function of the excess bias
Fig. 14. Dark-count rate for several SiPMs as a function of the excess bias voltage, voltage, V,p—Vyy, before and after irradiation to 200 Gy, 20 kGy, 2 MGy, and
Vop — Vg, before and after irradiation to 200 Gy, 20 kGy, 2 MGy, and 20 MGy. 20 MGy.

(C. Xu, R. Klanner, E. Garutti, W.-L. Hellweg, NIM A762 (2014) 149)

The effects of X-ray irradiation to doses of 0, 200 Gy, 20 kGy, 2 MGy, and 20 MGy investigated on the Hamamatsu silicon-
photomultiplier (SiPM) S10362-11-050C. The SiPMs were irradiated without applied bias voltage using. From current—
voltage, capacitance/conductance—voltage, capacitance/conductance—frequency, pulse-shape, and pulse-area
measurements, the SiPM characteristics below and abovebreakdown voltage were determined. Up to a dose of 20 kGy the
performance of the SiPMs is hardly affected by X-ray radiation damage. For doses of 2 and 20 MGy the SiPMs operate with
hardly any change in gain, but with a significant increase in dark count rate and cross-talk probability.
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Results on heavily irradiated SiPMs



SiPM irradiated up to 2.2*10% n /cm?

Can SiPM survive very high neutron fluences expected at high luminosity LHC? FBK SiPM (1 mm?, 12 um cell pitch was
irradiated with 62 MeV protons up to 2.2*10* n /cm? (1 MeV equivalent).
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(A.Heering et al., NIM A824 (2016) 111)
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2.8 mm dia., 10 um cell pitch Homamastu MPPCs irradiated up to 2.2E14 n/cm?
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VB shift with fluence reaches 4 V at
2.2E14 n/cm?. SiPMs with thicker
depletion region has larger VB shift
in comparison to the “thin” SiPMs.

0.3

(A.Heering et al., NIM A824 (2016) 111)
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KETEK SiPM after high neutron irradiation
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S. Cerioli, E. Garutti, R. Klanner, D. iomidze, S. Martens, J. Schwandt,
M. Zvolsky, Characterisation of radiation-damaged sipms, International
Conference on the Advancement of Silicon Photomultipliers, ICASiPM

2018.

SiPM electrical parameters of a KETEK SiPM (15 um pixel size)
as the function of neutron fluence measured at +20 °C and -30
°C . (Top) Pixel capacitance, Cpix, and (bottom) quenching
resistance, Rq.

28/11/2018

From the C-V measurements below the breakdown voltage, which were
taken at 25 frequencies between 100 Hz and 2 MHz, the SiPM electrical
parameters have been determined using a simple R-C model. It is found
that the value of Cpix neither depends on temperature nor on neutron
fluence, whereas the value of Rq increases for ®eq > 102 cm=2. As
expected for a poly-Si resistor, Rg increases with increasing
temperature

Musienko et all., PD18, Tokyo, Japan 23



Laser response of the CMS HE SiPM after irradiation with 5E13 n/cm?

Rioaq = 16.7 Ohm, average of 100 waveforms

New After 5E13 n/cm?

Re. — il st = Fi

* HE 2.8 mm dia., 15 cell pitch SiPMs

* Laser 405 nm, 25 psec FWHM

* Quartz fiber 2 m long

* Picoscope 6404D, BW=500 MHz, 5 Gs/sec
* Loads: 50 Ohm, 25 Ohm, 16.7 Ohm

(Yu. Musienko, A. Heering, A. Karneyeu, M.
Wayne, article in preparation)

S$10943-4732, 15 micron pixels, no trenches similar to S12572-015C SiPM

The SiPM response remains unchanged after 5E13 n/cm? (irradiated at Ljubljana reactor)

28/11/2018 Musienko et all., PD18, Tokyo, Japan 24



S12572-010C (quartz window) MPPC: dark currents and spectral response

after irradiation
U=10V
1.00E-03 = 35 .
cha = . ch.2
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$12572-010C MPPC: dark currents vs. V-VB $12572-010C MPPC: QE(10 V) s vs. wavelength
Ch.2 —irradiated with 24 GeV protons (~2.2E14 n/cm?)

Yu. Musienko, A. Heering, A. K , M.
Ch.8 —irradiated with 24 GeV protons (~7.5E12 n/cm?) (Yu. Musienko, A. Heering, A. Karneyeu

Wayne, article in preparation)
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S13190-1015 TSV MPPC: spectral response after 2E14 n/cm?

After 2E14 nf/cm?
600 1
+* new

500 cee s = after 2E14 n 0.9
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TSV design, SiPM is protected by gth [nm] gth [nm]

~300 um thick glass window

QE*Gain vs. wavelength (new and irradiated )  QE(irr.)/QE(new) vs. wavelength (new and
(Yu. Musienko, A. Heering, A. Karneyeu, M. irradiated )
Wayne, article in preparation)

20% + 30 % loss of the QE after irradiation is probably due to darkening of the entrance glass window after irradiation
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Annealing of the radiation damage



SiPM dark current annealing after irradiation

S$10943-4732, 15 micron pixels, no trenches similarto $12572-015CSiPM

Change of the dark

current after 16 hours

2.0E-04
annealing at 70 °C
E 1.5E-04
€ —
2 /N
:3; 1.0E-04 ;
y = \_
8 5.0E-05 ==I|d, T-corr (T=20.5 C)
- |fit
» Non-annealed part
0.0E+00
Time [days]

(Yu. Musienko, A. Heering, A. Karneyeu, M.
Wayne, article in preparation)
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HE-P-10935 array (2.8 mm dia., 15 um cell pitch) was
passively irradiated at CHARM up to 1.4E12 n/cm? (1 MeV
equivalent, CHARM calibration!!). Irradiation took ~5 days.
Annealing study (at T=20.5 °C) started 1 day after end of
irradiation.
* SiPM bias - 66.8 V (dVB=0.98 V)

T=20.5 °C
*  Duration of measurement — 39.2 days
After that SiPM was annealed at T=70 °C during 16 hours. |-V
curves were measured before and after annealing.
After 39.2 days of annealing at T=20.5 °C the SiPM dark
current reduced from 160 mA to 100.5 mA. Additional 16
hours annealing at 70 °C reduced the SiPM dark current from
100.5 mA to 88 mA (~13 %).
6 days after irradiation the dark current vs. time annealing
can be described by 3 time components:

t=4days t=23.5days Non-anneal. part Total (1(0)=160 uA)

0.069

0.382

0.549 1.000
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Dark current annealing at elevated temperature

le-02 - > .
(a) reverse 11V room temperature r.'._bcforcm-adxaton T. Tsang et. all performed annealing at
o a&a\*ﬁ///’ A T +250 °C, using forward bias with the
. fit . .

1604 e\)\\m\\“/ W | SiPM current reaching 10 mA. A
— . LA P . .
P \amct\“' L A remarkable effect of this high
B . / M / . v“"“‘“’“ iadised temperature annealing was
B / / 7 demonstrated: >20 fold reduction of
% 1e-07 o .
3 ]// ; )W the dark current. Single photo-electron

C . .
le-08 /f/ p— " 4 resolution was recovered after this
o5 hermal anneale . . .
1009 =1 -ﬁm procedure for devices irradiated up to
it R R R || A ®.g = 10'2 cm2 with cooling them to
-50 -55 ' -60 -65 (d)ii 00 H SR abOUt _50 OC.
reverse bias (volt) PR LR LR

Figure 3. (a) Representative reverse I-V characteristic of SiPM at room temperature, and its cumulative o
collection of the photoelectron histogram sampled at the peak of the time-gated single photoelectron charge T. Tsang, T. RE‘I.O, S. StOll, C. WODdy, Neutron radiation damage and
signal pulses at ~ 3 volt over-voltage (b) before irradiation, (c) after neutron irradiation to a dosage of recovery studies of Sipms Journal of Instrumentation 11 (12) (2016}
10° n/cn??, and (d) followed by 250°C thermal annealing, respectively. Single photoelectron histograms are ’
incyan, insets in (b) & (d) are the corresponding Poisson fitted photon number resolving histograms to ~ 2.6 P12002.

photoelectrons (red).
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Studies of radiation damage to SiPMs at low
temperatures



Dark Current vs. Irradiation Time&Neutron Fluence

lgark VS. Time, T=-30 °C, U=67.0 V (dVB=4.76 V) |, . vs. Fluence, T=-30 °C, U=67.0 V (dVB=4.76 V)

$a =
File Edit View Options Tools Help & cln3 [E=E SR~
Current-time.txt File Edit View Options Tools Help
x10° Bias was set OF Current vs Fluence
T F 10°°
g 4or L~ and setto 67 V = £
3 F ) g 40—
35— again 3 F
- 35—
30— =
- 30—
25 =
- 25—
20 20—
15:— 15i_
10 . s 10:_
= End of irradiation B
= SE-
0 TR Ll I T T I |llX103 07||J||J|lJIL|J1||||J\Llllll1|J\|J|1||1|Jl|1|)~(1cl‘3
(] 100 200 300 400 500 600 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time Fluence

HPK 1 mm?, 15 um cell pitch SiPM (HE/HB type) was irradiated under bias (U=67 V, dVB=4.76 V) in cold (T=-30 °C, Peltier thermoelectric cooler) at
CERN CHARM irradiated facility up to 2.E12 n/cm? (1 MeV neutron equivalent) total fluence. The SiPM dark current was monitored during irradiation.
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Dark Current vs. Bias (before/after irradiation, T=-30 C)
| 4. VS. Bias (before/after irradiation)
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At the end of irradiation Idark=11.7
UA was measured at dvB=3.0 V.
This result agrees well with our
previous result on the HE SiPM
dark currents measured after
irradiation at Ljublana reactor (~12
uA after recalculation for the 1 mm?2
area and 2E12 n/cm?).
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Dark Current annealing at T=-30 °C and -10 °C

Dark Current annealing at U=65.24 V (T=-30 °C and T=-10 °C)
Bias OFF for short time T=-1? °C  T=30°C

AN
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e §EE ™ — | We also studied annealing of the dark
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| ; Less than 25% of the dark current
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Dark Current annealing at T=-30 °C and 20 °C

-30°C -10°C 1 0°C + 10°C 20°C
I I 1
1.2

Relative current [a.u]

0.2

0 20 40 60 80 100 120
Time [days]

We calculated relative dark current change with time: ~60 % of dark anneals if temperature changes from -30 °C to +20 °C.
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KETEK 2.8 mm dia. (15 um cell pitch) SiPM irradiated at -22 °C with
1.4E12 n/cm?2 : accelerated annealing study

@ Review.vi EI

- IvsV dl1dY vs dl/dV ws dVidliwvs V d2lidV2 ws ¥ Csws W Impedance vs V Impedance vs Freq
2mi-
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Similar result was obtained with the KETEK SiPM irradiated in cold
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Approaches to develop radiation harder SiPMs

+* Dark noise reduction

Optimization of the electric field profile (especially for smaller cell size) to get uniform electric field across
the cell (no regions with higher or lower electric field values). Reduction of the maximum electric field value
(trap-assisted tunneling, Pool-Frenkel effect), while keeping thickness of the depletion layer thin to reduce
generation volume

7

%+ Cell occupancy reduction

Cell occupancy can be reduce developing SiPMs with small cell size and small recovery time

+* Power consumption reduction

Reduction of SiPM gain (smaller cell size, smaller cell capacitance) and dark current generation
.

*%* Breakdown voltage increase minimization

It can be reduced by reducing the thickness of the depletion region. Compromise with the electric field
reduction is required.

X/

%* Reduction of the damage in SiPM entrance window

Optimization of the SiO,/S;N,/Si interface to reduce light losses in an entrance window and avoid trapping
in front SiPM layer

+* Optimization of SiPM package

Package of SiPM has to allow:

v SiPM operation in wide range of temperatures (-50 °C + 200 °C);

v’ Easy heat removal (to reduce SiPM self-heating)

v Integrated temperature sensor (can be integrated on the same chip as SiPM)
v

Integrated heater?

Musienko et all., PD18, Tokyo, Japan 36



Summary

This review is an attempt to summarize the current knowledge of radiation damage of
SiPMs. The main issues with heavily irradiated SiPMs are the increase of dark count rate and
Gain&PDE reduction due to high cell occupancy and self-heating effects caused by high
currents of irradiated SiPMs. Recently developed SiPMs from several producers
demonstrated they ability to operate up to 1E14 n/cm? R&D on radiation hard SiPMs
continue. Approaches to develop radiation harder SiPMs are defined.

I would like to thank all the people whose slides (shown at PhotoDet-2012, NDIP-2014,
PhotoDet-2015, VCI-2016, Elba-2015, 2nd SiPM Advanced workshop-Geneva-2014, CPAD-
2016, RICH-2016, IEEE-NS/MIC-2016, INSTR-2017, SENSE-2018, ICASiPM-2018 conferences

etc.) are used in this presentation.
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Back-up

Musienko et all., PD18, Tokyo, Japan
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Characterization methods for irradiated SiPMs
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Set-up (I)

e SiPMs (or XP2020 PMT) are illuminated with the parallel light from LED through 0.7

mm (or 2 mm) diameter collimator

e Light intensity is selected to be in SiPM linear range (<5% non-linearity)

e SiPMs were connected to a fast linear transimpedance amplifier (gain~50)

e Average pulse amplitude (in photons) is measured using calibrated XP2020 PMT

e Mechanical system allowed precise positioning (<50 um) of the SiPM and PMT in all
3 dimensions

e SiPM can be easily replaced with the XP2020 PMT for light calibration

e LED with the peak emission of 300 nm — 670 nm can be used in these
measurements

e LED spectral response is measured using @Optometrix@ monochromator

e Temperature - monitored using Pt-100 resistor

e Currents were measured using Kethley-487 source-meter

e Drop of the bias voltage due to HV resistor (1.9 kOhm) is corrected using values of
dark current during this measurement

e Signals (50 k — 100 k of waveforms) are digitized by Picoscope 6404D DSO, BW=500
MHz, 5Gs/sec, 2 Gb

e Labwiev based software to run DAQ and analyze data
Musienko et all., PD18, Tokyo, Japan 40



28/11/2018

Set-up (Il)

Pulse Generator

Gate Picoscope DSO
PM57 Signal
RS HV-source/Picoammeter /
Keithley
487
Dark box —__
—1
3k +QV —
Collimator
LED NDF i U
izﬂl/\/\/v\n | A
NNANNAN
| o
ann PT100 | 1
y
SSPM Personal Computer
Keithley ;
2000 Multimeter

Musienko et all., PD18, Tokyo, Japan

41



DSO measurement (Signal
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DSO measurement (pedestal

@ osciloPlotaw
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Example of measured LED spectra and pedestal

U=65.0V, dVB~1.9V, T=-23.5C

3000
pedestal
L
2500 3
b I
C o
2 2000 .
qG_J . LED signal (~430 pe or 2150 photons)
O ¢ .
= 1500 ‘Iz
o) . : s %
E ' R
= 1000 . :
500 . . f ‘..
: 1 /4 [

-5.0E-09 0.0E+00 5.0E-09 1.0E-08 1.5E-08 2.0E-08
Charge (50 ns gate) [a.u.]
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Amplitude (a.u.) vs. dVB (determined using
maximum dIn(l)/dV method

after 5E13 n/cm?
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PDE* calculation

Average number of photons in LED pulse is measured using XP2020 calibrated: PMT
(QE(410 nm)=25.0 %, ENF=1.15), 100 k of waveforms recorded by DSO: N,
Replace PMT with SiPM+amplifier
Record ~ 50 k of waveforms for dVB=-1V ++5V, step 0.1V + 0.2V
Calculate average signal amplitude (A), signal rms (rms(A), pedestal (P), pedestal rms
(rms(ped))
Number of photoelectrons/ENF is calculated using Poisson statistics:
N ./ENF=(A-ped)*/(rms(A)*>-rms(ped)?)
PDE* is calculated using:
PDE*=PDE/ENF= (N_./ENF)/N,

Musienko et all., PD18, Tokyo, Japan
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Number of photoelectrons/ENF
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Excess Noise Factor
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Equivalent Noise Charge (ENC*) - calculation

* Calibration of amplitude scale in (photo)electrons (k) for each SiPM voltage:
koe(V)=(Noe(V)/ENF(V))/(A(V)-ped(V))

* ENC* calculation:
ENC*(V)=ENC(V)/ENF(V)=rms(ped)(V)* k,.(V)

Musienko et all., PD18, Tokyo, Japan
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ENC/ENF [electrons, 15 ns RMS]

14
12
10

o N B O O

ENC* vs dVB
after 5E13 n/cm?

m

m

m ¥ 4
an ! A, .
m I . At ¢
m o, A .
| A * ¢
u A .
. 'A A, ¢ mT=-30C
m, 4 ° A T=35C
l-‘o ¢

::: ¢ T=-40C

1 2 3

V-VB [V]

Musienko et all., PD18, Tokyo, Japan

51



28/11/2018

Dark Count™ - calculation

Dark count is calculated using simple Poisson assumption: measured noise is produced by
independent dark pulses of the same amplitude. Then:

Dark Count* = ENC*2/Int. time

Musienko et all., PD18, Tokyo, Japan
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Does ENF changes with irradiation?

HE arrays(8 channel) was Estimated dose per channel

irradiated in the IRRAD facility number — Array 35
at CERN with 24 GeV protons

5 i dent] Fluence,
osa.ge was |r.1 ependently ch# By
monitored using APDs
1 2.33E+10
Dosage across each array was
position dependent due to 2 3.42E+10
the profile of the beam — this 3 5 21E+10
effect is very evident in the
data 4 1.12E+11
Peak dosage of nearly 5E12 5 4.82E+11
neutrons/cm? (ch# 7) 6 3.05E+12
7 5.00E+12
8 1.70E+12
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Amplitude [a.u.]
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