

5th International Workshop on New Photon-Detectors

Nov. 27-29, 2018, The University of Tokyo, Tokyo, Japar

Development of High-density NIR-sensitive Silicon photomultipliers at FBK

Fabio Acerbi, M. Capasso, G. Paternoster, N. Zorzi, A. Gola

Fondazione Bruno Kessler (FBK), Trento, Italy.

acerbi@fbk.eu

> https://iris.fbk.eu/ silicon-photomultipliers

Outline

FBK silicon photomultipliers (SiPM) technology

- Roadmap & new development ongoing
- NIR detection with SiPMs
 - Applications
 - Technological challenges and design requirements

• NIR technology at FBK

- TCAD simulations:
 - Thin vs. thick epi-layer
 - The border effect
- Design strategies \rightarrow produced SiPMs 2nd batch
 - Small cells: PDE improvement
 - Large cells: CT reduction

Conclusion & future developments

FBK SiPM technology roadmap

Typical SiPM applications

Scintillation detectors: crystals emit light signals interacting with X/ γ rays

Biology applications e.g. spectroscopy

Analytical instrumentation e.g. SEM, microscopy

High energy physics

(low noise, dynamic range, radiation hard)

Nov. 2018

F. ACERBI - NIR SiPMs at FBK (PhotoDet18@Tokyo)

NIR: new applications

fNIRS (functional NIR Spectroscopy)

R. Zimmermann, et. Al. "Silicon photomultipliers for improved ..."

Re et al. Neurophoton. 3(4), 045004 (2016)

LIDAR (light detection and ranging)

fNIRS: non-invasive investigation of brain activation, chest, tissue composition, etc.

- SiPMs are emerging over other detectors
- Direct contact with skin \rightarrow enhanced light harvesting
- Large active area (3x3 mm² or more) with good PDE and timing
- Enhanced NIR sensitivity → reduced laser power

LIDAR in industrial and automotive application

- SiPMs are emerging over other detectors
- Need very high sensitivity → good time-of-flight res.
- → Small cell pitches + high efficiency

Readout of NIR scintillation from liquid noble gases

- SiPMs are good candidate
- Good light yield in the NIR
- no Rayleigh scattering and absorption on metallic surfaces (as for VUV)

NIR-sensitive SPADs

Avalanche Diode in 0.18µm CMOS"

CMOS SPAD array: deep junction

- nwell/p-epi or CUSTOM implants
- PDP=19.4% @ 870nm (not including FF)
- FF relatively small: ~30%

"Red-enhanced SPAD" : thicker epi-layer

- 40% @ 800nm, 30% @ 850nm
- Breakdown voltage: ~60V
- Just single SPAD, relative small active area

Wavelength [nm]

NIR SiPM: design considerations

- New FBK custom technology: based on RGB-HD
 - n-on-p junction type
- Increase PDE at long wavelength
 - Thicker epitaxial layer
 - Deeper trenches for cell electrical isolation
- In SiPM → High FF has to be preserved (also at high depth)
 - − This is not a SPAD → <u>NIR sensitive SiPM is more challenging</u>
 - The inactive border of the cell can be very important \rightarrow to be reduced
- Breakdown voltage should stay low
 - Keeping the low temperature dependence *(important in industrial and automotive app.)*

Design: thick epitaxial layer

- At 850nm \rightarrow silicon absorption depth is 18µm
 - → we used a thicker epitaxial layer: 8µm
 - theoretical QE at 850 nm: about 35%
 - Trench depth increased: > 8µm
- But, other quantities in PDE calculation:
 - Triggering probability (Pt)
 - Effective geometrical fill-factor (FF)

Design through TCAD simulations

25µm cell: the "Border effect"

- 1. Effective high-field region is smaller than the nominal one
- 2. Lateral depletion below the high field region \rightarrow lateral drift
 - Both these effect \rightarrow "border effect" \rightarrow reduction of effective FF

Thin vs. thick epi

TCAD simulation of 25µm cell at breakdown voltage

Thicker epitaxial layer \rightarrow Higher "BORDER EFFECT"

- Border effect may compensate the PDE increment due to thicker epi-layer !

NIR SiPM improvements strategies

- Applications like LIDAR → need small cells but with high PDE
 → border effect & small cells not possible
- 2 strategies:
 - Small cells with improved internal structure
 - Big cells with reduced correlated noise

NIR-HD productions

2017 NIR-HD FBK production

- <u>First promising results</u> (see presentation F. Acerbi at NDIP 2017)
- PDE limited by high border effect
- New TCAD simulation to reduce border effect
- <u>New ideas</u> on cell design

2018 NIR-HD FBK production

Several layout and variants have been produced and tested. Here we report a comparison between the following promising ones:

1x1 mm ² (small pitch)		1x1 mm ² (large pitch)		
25µm (thick epi)	25µm (thick epi - improved)	50µm (thick epi)	54µm (multiple trenches)	
Faster recharge, lower CN influence		Slower r higher e	Slower recharge, higher efficiency	

Figure of merit: PDE vs. Correlated Noise → to be improved

25µm cell with improved cell structure

• Modified doping profile \rightarrow improved thick epi structure:

- Enhancement of the effective high field region (but not close to trench, to avoid higher noise !)
- Reduction of the lateral depletion

Measurement results:

SiPMs with 25µm cell pitch

SiPM 25µm pitch, thick-epi ("std")

- Good results with relatively small cell:
 - ~15% @ 850nm, ~10% @ 900nm
 - But limited by border effect

SiPM 25µm pitch, thick-epi vs thin-epi

For 25µm cell → thick-epi and thin-epi have the same PDE in the NIR !

- Advantage of thicker epi balanced by higher border effect.
- Need structure improvement !

SiPM 25µm pitch, thick-epi, improved

- Improved PDE both in the peak and in the NIR:
 - PDE: ~20% @850nm, ~13% @ 900nm
 - with 25µm cell pitch at 10V excess bias

NIR-SiPMs – first results

- <u>Breakdown voltage:</u> same of thin-epi (28V 20°C)
- Small breakdown temp. dependence
- Primary DCR slightly higher than thin epi (expected due to thicker depleted region)

Performance of 25µm std and improved

• Effect of the improved structure is visible also in the GAIN

- Higher GAIN and CT for the improved structure.
- DCR ~800kcps/mm² for std. ver.
 DCR ~1Mcps/mm² for improved ver.
- BUT overall better PDE-vs.-noise. (see next slides)

Measurement results:

SiPMs with 50µm cell

SiPM 50µm pitch, thick-epi ("std")

Bigger cell → much smaller border effect

- PDE: ~22% at 850nm, ~15% at 900nm

Very good PDE, but big area give higher correlated noise!

SiPM (54)µm pitch, thick-epi, multi-trench

- PDE reduced due to lower FF... but also CT is reduced.
- Correct comparison \rightarrow figure of merit: PDE-vs.-CT \rightarrow Enhanced !

Summary: new FBK NIR-HD summary

Nov. 2018

Measurements at cryogenic temperature

NIR-HD 25 μ m cell \rightarrow Measurements in liquid nitrogen @77 K

Conclusions

- NIR range appealing for several applications
 - − SiPM design is challenging (especially for small cells) \rightarrow border effect !
- First production in 2017
 - Thicker epi structure with "standard" cell structure \rightarrow promising results
- Second production in 2018
 - Improved performances through
 - > Modified doping profiles <u>25µm cell</u>: at 10% DiCT <u>>10% PDE at 900nm</u>
 - Multiple trenches <u>54 µm cell</u>: at 10% DiCT <u>~12.5% PDE at 900nm</u>

Next steps

- Further tests at cryogenic temperatures
- Further SiPM improvements for better PDE

5th International Workshop on New Photon-Detectors

Nov. 27-29, 2018, The University of Tokyo, Tokyo, Japar

Development of High-density NIR-sensitive Silicon photomultipliers at FBK

Fabio Acerbi, M. Capasso, G. Paternoster, N. Zorzi, A. Gola

Fondazione Bruno Kessler (FBK), Trento, Italy.

acerbi@fbk.eu

> https://iris.fbk.eu/ silicon-photomultipliers

backup

• The border effect → still the limiting effect in PDE improvement (especially in small cells)

- maximum PDE achievable ?
 - We employ a circular SPAD with covered edges
 - Only central region detect lights

Comparison: SPAD thin epi SPAD thick epi

PDE comparison: thin vs think epi-layer

- Comparison: PDE of circular SPAD (covered edges) \rightarrow thin vs thick epi
 - Significantly higher PDE at long wavelength... despite the slower Pt rise
- <u>PDE</u>: from 20% to ~<u>30% at 850nm</u> from ~12% to <u>~18% at 900nm</u>

PDE achievable without border effect