Performance Study of Large CsI(TI) Scintillator with MPPC Readout

Kento Torigoe, Yasushi Fukazawa, Tsunefumi Mizuno, Masanori Ohno, Hiromitsu Takahashi, Nagomi Uchida, Koji Tanaka (Hiroshima U.), Kazuhiro Nakazawa (Nagoya U.), Norbert Werner (Eotvos U./Masaryk U./Hiroshima U.),

András Pál, László Kiss (Konkoly Observatory), Jakub Řípa (Eotvos U./Charles U.),
Gabór Galgóczi, Zsolt Frei (Eotvos U.), Norbert Tarcai, Zsolt Várhegyi (C3S LLC), Teruaki Enoto (Kyoto U.),
Hirokazu Odaka (Tokyo U.), Yuto Ichinohe (Rikkyo U.),
Kyo Kume, Satoshi Mizushima, Satoshi Hatori (The Wakasa-wan Energy Research Center),
Takashi Hasegawa (Hasetech LLC)
Nov. 27, 2018, PD18

EM follow-up of GW transients

■ GW170817 was the first observation of electromagnetic (EM) counterpart of the binary neutron star merger

■ Gigantic campaign of follow-up observation in any EM wavelengths successfully carried out and found an EM counterpart as a kilonova

■ Nominal short gamma-ray burst (SGRB) association is still ambiguous GRB: the largest explosive phenomena in the universe and the origin is still not understood

■ More detections/follow-up observations are needed for modeling and to find a SGRB association

Typical light curves of GRB

Light curves of GRB 170817A 2

What do we need?

Solution

	FOV (str)	Accuracy
CAMELOT	4π	Several tens of arcmin
Fermi-GBM	3π	3°
Swift-BAT	0.4π	4 arcmin

It is expected that CAMELOT achieves all-sky monitoring and good localization accuracy 2

Detector design

CsI

3U CubeSat platform (mm)
■ Under the limitation of size, we need to use thin and large scintillators and small photodetectors
■ We want to lower the energy threshold to achieve good localization accuracy

We plan to use CsI(TI) scintillator and MPPC, Maximum size to mount \downarrow

Setup of readout system

We developed multiple readout system to improve the light yield and reduced the noise by using coincidence technique

Light yield and energy threshold

- Light yield of $150 \times 75 \times 5 \mathrm{~mm}^{3} \mathrm{CsI}$ is $\sim 87 \%$ of $100 \times 75 \times 5 \mathrm{~mm}^{3} \mathrm{CsI}$ despite the size ratio of 1.5 times
\rightarrow the bigger CsI is better suited to the nanosatellites

■ Absolute light yield: ~3.5 p.e./keV (evaluated by comparing the pulse height with that of obtained by a calibrated 10 mm cubic CsI)

Configuration for measuring uniformity

We measured position dependence of the light yield and used two lead sheets each containing ten holes that are $\sim 1 \mathrm{~mm}$ in diameter.

Uniformity

We measured the spectra at each positions, and defined non-uniformity as the peak-to-peak difference of the 59.5 keV line among the each positions
The non-uniformity changed from ~40 \% to ~23 \% by using the two-MPPC readout
\rightarrow the uniformity was improved with the twoMPPC readout

Optimum position of MPPCs

We investigated the optimum position of the two MPPCs which gives the highest light output
■ simulated a propagation of scintillation lights inside the scintillator to the MPPC by Geant4, ray-tracing Monte Carlo simulator

- compared the number of detected photon while changing the position of the two MPPCs

Configurations

\square	Beam energy: 59.5 keV
\square	Number of the beam (set): $20000(8)$
\square	Generation position of the beam: 20 cm above the CsI surface
\square	Scintillation yield: 65 photon $/ \mathrm{keV}$
Reflectivity: 99.9%	
\square	Absorption length of scintillation lights: 300 cm

Optimum position of MPPCs

Firstly, we compared the result of simulation with that of experiment (number of detected photon at simulation) \propto (peak channel at experiment)

| | $1-M P P C$
 readout | 2-MPPC
 Readout | ratio |
| :--- | :---: | :---: | :---: | :---: |
| Simulation (number of detected photon) | $\mathbf{3 5 8 0 0 \pm 2 0 0 0}$ | $\mathbf{5 6 2 0 0 \pm 2 4 0 0}$ | ~ 1.6 |
| Experiment (peak channel) | $\mathbf{2 5 1}$ | $\mathbf{3 5 4}$ | ~ 1.4 |
| Center line | | Simulation is reliable! | Good agreement |

We compared the number of detected photon at three configurations

Distance from the center line (mm)	Number of detected photon
5	$\mathbf{5 6 2 0 0} \mathbf{2 4 0 0}$
$\mathbf{1 8 . 7 5}$	$\mathbf{5 7 5 0 0} \mathbf{3 3 0 0}$
32.5	$\mathbf{5 5 1 0 0} \mathbf{1 0 0 0}$

Symmetrical configuration gives similar light yield independent of the each MPPC position
We are investigating further optimization

Effect of proton damage on MPPC in orbit

■ irradiated 200 MeV proton beam on MPPC (S13360-6050CS) at total dose of 10, 50, 100, 1000 rad (~ 1 krad is the total dose in one year)
■ evaluated the dark current, energy spectrum and threshold by using 10 mm cubic $\mathrm{CsI}(\mathrm{TI})$ scintillator

Configurations

\square	Shaping time: $1 \mu \mathrm{~s}$
\square	Temperature: 20 to $-30{ }^{\circ} \mathrm{C}$
\square	Operational voltage: 55.0 V
\square	Breakdown voltage: 51.73 V

Dark current change

Dark current increased by ~300 times at total dose of 1 krad and has barely changed for 7 days

Energy threshold

> Energy spectra at total dose of 1 krad at $-30{ }^{\circ} \mathrm{C}$

Energy threshold at
total dose of 1 krad
light yield of 10 mm cubic CsI is higher than that of
$150 \times 75 \times 5 \mathrm{~mm}^{3}$ CsI by 3.6 times
Energy threshold at $-30{ }^{\circ} \mathrm{C}$ is estimated to $<100 \mathrm{keV}$ at large CsI
\rightarrow need cooling and shielding of MPPCs

Summary and future works

■ Light yield of $150 \times 75 \times 5 \mathrm{~mm}^{3} \mathrm{CsI}$ is $\sim 87 \%$ of $100 \times 75 \times 5 \mathrm{~mm}^{3} \mathrm{CsI}$

- Achieved low energy threshold $<10 \mathrm{keV}$ at $25{ }^{\circ} \mathrm{C}$ on the ground

■ Uniformity was improved with the two-MPPC readout
■ Symmetrical configuration of two MPPCs gives similar light yield

- Dark current increased by ~300 times at total dose of 1 krad and has barely changed for 7days

■ Energy threshold at total dose of 1 krad is $<100 \mathrm{keV}$ at $-30{ }^{\circ} \mathrm{C}$
\rightarrow analyzing the results of the experiments of proton damage test in detail and will compare that with previous studies

Energy threshold

