

A. Hahn, A. Dettlaff, D. Fink, D. Mazin, R. Mirzoyan, M. Teshima, Prototyping of Large-size Silicon Photomultiplier Based Detector Modules in IACTs

Alexander Hahn

5th International Workshop on New Photon-Detectors - PD18

28.11.2018

- Canary island of La Palma
- 2200 m above see level
- Two imaging atmospheric Cherenkov telescopes (IACTs)
- Each camera equipped with 1039 PMTs
- 169 clusters, each based on 7-pixels; 6 open slots at vertices of the hexagonal-shape camera

Alexander Hahn

[2]

MAX-PLANCK-GESELLSCHAFT

Motivation

- SiPMs challenge PMTs in terms of detection efficiency
- No HV necessary
- No ageing
- Potentially SiPMs can be operated during moon time similar to MAGIC PMT cameras
- Drawbacks: temperature dependence, high background rate due to high sensitivity to LoNS at long-wavelengths
- **Goal:** Compare performance of PMT and SiPM based detectors during real telescope operation

Two Design Generations

Werner-Heisenberg-Institu

Excelitas

• Using Excelitas, Hamamatsu and SensL SiPMs

- Up to 9 SiPMs/pixel
- Single, summed output of all SiPMs on a pixel
- Common high voltage per cluster (7 pixels)
- Bias voltage adjustment for sub-groups of SiPM
- Optimized heat flow using Aluminium core PCBs

Sensor type	Breakdown voltage
Excelitas C30742-66	~ 95 V
Hamamatsu S13360-6075VS	~ 50 V
SensL MicroFJ-60035-TSV	~ 30 V

Alexander Hahn

PD18 28.11.2018

F Freune

Sens

SiPM clusters in the MAGIC Imaging Camera

Installed in 2015 and 2017 • Hamamatsu 1 cluster Excelitas • 1 cluster Hamamatsu \bullet 1 cluster SensL • **Excelitas** SensL

SiPM clusters in the MAGIC Imaging Camera

Hamamatsu

- Installed in 2015 and 2017
- 1 cluster Excelitas
- 1 cluster Hamamatsu
- 1 cluster SensL
- Using the standard readout and data taking
- Operated in parasitic trigger mode on events triggering the shown inner camera region

Excelitas

SensL

Calibration

Two methods used

• Single-photoelectron spectrum

- F-Factor (= excess noise) $\overline{m_{\text{phe}}} = 8 \cdot \ln(2) \cdot F^2 \cdot \left(\frac{\overline{Q}}{\text{FWHM}}\right)^2$
- Using position and FWHM of charge distribution

Alexander Hahn

Expectation

- Calculate expected performance with reference to MAGIC PMTs (type R10408)
 - Light of Night Sky (LoNS)
 - Cherenkov light
 - With Hamamatsu SiPM
 - 9.6 times more LoNS
 - 1.9 times more Cherenkov light
 - \sqrt{LoNS} Contributes as noise

CTA uses newer PMTs (type R12992-100, QE 42.6 %)

Alexander Hahn

Performance

- Calibration laserlight pulses
- Illuminating camera
- Fixed frequency (25 Hz)
- Fixed wavelength (355 nm)
- Average light intensity constant
- Used for PMT calibration
- Used for comparing detection efficiencies of SiPMs and PMTs

Performance Gen. 1 Excelitas SiPM

- Calibrated using phe-spectrum
- Dead area of pixel, PDE(λ)
 ⇒ expect ~ 32 phe
- Number of phe is in
 expected range

 Hamamatsu and SensL clusters expected to perform as good as current MAGIC PMTs in terms of pixel PDE

Performance Gen. 2 Hamamatsu SiPM

- Calibrated using phe-spectrum
- Number of phe in expected range (dead area of pixel, PDE(λ))
- Number of phe is comparable with installed MAGIC PMTs
- One pixel higher than PMT (same gain as other pixels but lower cross-talk)
- Big spread is caused by differences in cross-talk
 → Under investigation

Alexander Hahn

Performance Gen. 2 SensL SiPM

- Calibrated using F-Factor
- Number of phe in expected range (dead area of pixel, PDE(λ))
- F-Factor calibration method gives plausible results
- Number of phe is comparable with installed MAGIC PMTs

Alexander Hahn

SiPMs in trigger region

- Comparison of Cherenkov light detection efficiencies
- Systematic uncertainties because of parasitic trigger mode
- Far less problems if SiPMs are installed in trigger region
- Ideally camera centre
- ⇒ Swapping Hamamatsu SiPM cluster with PMT cluster in centre 1st July 2018

Performance Cherenkov light

Performance Cherenkov light

- Compare pixel trigger rates of PMT and SiPM pixels
- Same threshold in phe
- \sqrt{LoNS} leads to ~ 3 times higher trigger rate
- Good agreement with expectation

Summary and Outlook

Goal: Make a fair SiPM-PMT comparative study for exploring the potential of SiPM for IACTs

Achievements

- Three prototypes of different SiPMs installed in MAGIC camera
- Used two calibration procedures
- Measurements of calibration pulses are in accordance with expectations
- Ongoing comparison of detection efficiencies and the signal to noise ratio for measuring Cherenkov light from air showers

Further tasks:

- Perform a rate scan to estimate energy threshold of SiPM based camera
- Cross-calibration using muon events
 Alexander Hahn
 PD18 28 11 2018

Thank you for your attention

© Alexander Hahn, MPP

References

- [1] R. Wagner. Picture gallery of the MAGIC telescopes. https://magicold.mpp.mpg.de/gallery/pictures/ . Retrieved 10-2014
- [2] D. Nakajima, et al. New Imaging Camera for the MAGIC-I Telescope, 2013. Proc. of 33rd International cosmic ray conference.
- [3] D. Renker, et. al., Advances in solid state photon detectors, J. Instrum., 4, 2009.
- [4] S. Vinogradov, Analytical models of probability distribution and excess noise factor of solid state photomultiplier signals with crosstalk, NIM-A, 695:247-251, Dec. 2012

- Excelitas C30742-66 SiPM
- Three groups (2-3-2) of Excelitas 6x6 mm² SiPMs with same breakdown voltage
- Single, summed output of all SiPMs
- Only one high voltage per cluster
- One offset voltage per group used to disable the pixel (star in FOV), adjust gain
- One temperature sensor next to sensors
- Dedicated light guide design
- 31 % dead area

- 100 kEvents @ 300Hz with closed lids
 - \Rightarrow Pedestal / dark count events
- Selection of good events
- Fitting spectrum for gain
- Integrate or fit original data for cross-talk estimation

- Calibration via F-Factor method (like PMTs)
- Cross-talk (p) defines F-Factor of SiPMs

$$F = 1 + p + \frac{3}{2}p + O(p^3)$$

- Measured cross-talk in lab
- Read dark current during pedestal run ⇒ calculate F-Factor
- Higher order terms in SiPM F-Factor lead to a higher uncertainty in converted phe wrt. PMT conversion

[3, 4]

- Aluminium core PCBs
- Improved heat conductivity from pixel to cooling plate
- ➡ Reduced operational temperature
- ⇒ Reduced temperature variation due to changing background light condition

Alexander Hahn

Alexander Hahn

PD18 28.11.2018

29

Alexander Hahn

Alexander Hahn

Alexander Hahn

Alexander Hahn

Alexander Hahn

Alexander Hahn

Calibration events

Laser pulses with constant intensity from the calibration box in the centre of the mirror dish

- Superimposed averaged calibration events of a SiPM and a PMT pixel
- Undershoots due to DRS4
 readout
- FWHM(PMT) ≈ 2 ns FWHM(SiPM) ≈ 5 ns

Alexander Hahn

Uniformity in illumination

Alexander Hahn

MAX-PLANCK-GESELLSCHAFT

BACKUP

Alexander Hahn

PD18 28.11.2018

38