PD18 - 5th International Workshop on New Photon-Detectors Nov. 27-29, 2018, The University of Tokyo, Tokyo, Japan

R&D on the extension of the MCP-PMT lifetime

Genta muroyama (Nagoya Univ.) 2018/11/29

QE drops of MCP-PMT

- The photocathode is damaged by the neutral gases and feed backed ions emitted from MCPs.
- > The QE drops depending on the accumulated output charge.
- The mechanism is not known.
- 1. <u>Accumulation to the surface</u> The neutral gases accumulate in the photocathode.
- Change of work function.
- 2. <u>Destruction of the crystal structure</u> The feed backed ions have enough energy to destroy.
- > Reduction in the probability of the photoelectron emission.

Past R&D to extend the MCP-PMT lifetime

- MCP-PMT is indispensable photo detector for Belle II TOP counter.
- The output charge is dominated by beam background.
- Estimated output charge is 8 C/cm² @Belle II 50 ab^{-1} .
- Need to extend the MCP-PMT lifetime.
- Ceramic block and Al layer
 - Barrier against the neutral gas and ions
 ⇒Conventional MCP-PMT
- ALD coating on MCP
 - Suppression of the residual gas emission
 - ⇒ALD MCP-PMT

Lifetime of MCP-PMT for TOP counter

Define the PMT lifetime as the total output charge where QE decreases to 80%.

Fitting function $\frac{QE(Q)}{QE(0)} = 1 - 0.2 \left(\frac{Q}{\tau}\right)^2$ Q: output charge , τ : lifetime

- Conventional MCP-PMT : 0.3 1.7 C/cm² (12 samples) average : 1.1 C/cm²
- ALD coating MCP-PMT : 2.5 26.1 C/cm² (8 samples) average : 10.4 C/cm²

Developed more R&D because the lifetime of ALD PMT is not enough.

- Life-extended ALD MCP-PMT
 - Applied further residual gas reduction processes
 - Measured 8 samples

2018/11/29

Setup for lifetime measurement

LED run

Degrade the photocathode.

5

Laser run

Monitor the hit rate to estimate relative QE.

Lifetime of life-extended ALD

- To apply this MCP-PMT in the other high intensity experiments, \succ further extension of the lifetime is necessary.
 - The lifetime is still much smaller than usual PMT.
 - Need to understand the mechanism of the QE drop for further improvement.

MCP-PMT w/o Al layer

 Measured two samples w/o Al layer for studying the neutral gas emission from second MCP.

w/o Al layer MCP-PMT lifetime result

➢ The outgas from the 2nd MCP is still a dominant factor of the QE drop.

Al layer.

Ion-feedback and after-pulse

- Checking the effect of the feed backed ions by analyzing after-pulse.
- > Test of the hypothesis of destruction of crystal structure.
- The delay time of after-pulse relates to the mass of ion and the applied voltage. ^{Photocathode}

 $t \propto \sqrt{m_{ion}/V}$

- Identify the ion species from the timing of the after-pulse.
- Suppose these ion species and neutral gases are same elements.

Ions come mostly from second MCP but heavy ones are stopped by Al layer.

Setup for after-pulse measurement

- Veto first pulse by clock synchronized to laser timing.
- Timing between TDC1 and TDC2
 = The delay time of after-pulse

Type of MCP-PMT	Samples	
Conventional	7	
Normal ALD	4	
Life-extended ALD	5	
Life-extended ALD w/o Al layer	2	

After-pulse distribution

10

Hydrogen ion rate VS lifetime

 It looks like no correlation between the after-pulse rate and lifetime.

> But effect of the noise is not clear.

Helium ion rate VS lifetime

- He^+ has also no correlation with lifetime[C/cm²]
- The Life-extended ALD has small after-pulse rate because helium can penetrate quartz glass.

Water ion rate VS lifetime

- ALD coating MCP-PMTs have many water ions.
- They may come from ALD process because water is usually used in this process.
- Rate of H₂O⁺ do not have a correlation with lifetime.

Summary

Residual gas	H^+	He ⁺	H_2O^+	Heavy ion	Neutral gas
Effect on lifetime	Not clear	No	No	Νο	Yes

Heavy ions

Heavy ions appear only without the aluminum layer and have no correlation with lifetime.

2018/11/29

Conclusion

- We succeeded in improving the lifetime of the MCP-PMT by suppressing the residual gas.
- > Life-extended ALD : at least 13.6 C/cm².
- To understand the mechanism of the photocathode deterioration, we analyzed after-pulse.
- To make a conclusion of the mechanism, we need to check more.
- The cause of the photocathode deterioration has been narrowed down to hydrogen ions and neutral gases.

BACK UP

Micro Channel Plate (MCP)-PMT

- Developed at Nagoya and HAMAMATSU photonics.
- High gain : $O(10^6)$
- Use two Micro Channel Plates
- Good time resolution : ~30 ps
- Available in magnetic field
- High QE : 28.8% (@360 nm) $_{\rm F}$
- Use Multi Alkali photocathode
- Short photocathode lifetime

MCP