5th International Workshop on New Photon-Detectors (PD18)

Application of MPPC for T2K near detector upgrade

27 November 2018

Tsuneyuki Matsubara (KEK) for the T2K ND280 upgrade group

T2K experiment

A Long baseline neutrino oscillation experiment

- First indication of ν_{e} appearance with 2.5 σ significance in 2011, followed by definitive observation with 7.5 σ significance in 2013
- World-leading measurement of oscillation parameters (sin² θ ₂₃, Δ m²₃₂)
- \cdot A hint of CP violation in neutrinos with 2.0 σ significance in 2017
- \rightarrow Plan to upgrade the beam intensity & the near detector until 2021 2/15

T2K near detector & its upgrade

ND280 is to suppress systematic error on ν flux + cross section

- Dominant error in a precision measurement after the beamline upgrade
- Current ND280 is not optimized for high angle tracks (unlike 4π acceptance in SK)

New scintillator detector (SuperFGD), 2 High-Angle TPCs, ToF detectors are to replace the P0D, keeping downstream detectors

- \rightarrow Larger acceptance by the new layout
- \rightarrow Further improvements in SuperFGD (in which many MPPCs are newly equipped $_{3/15}$

SuperFGD

A novel plastic scintillator detector with new structure

Proposed in 2017 for the T2K near detector upgrade [JINST 13 (2018) P02006]

- Optically independent ~2,000,000 scintillator cubes (1 cm³) w/ 3 holes
- Three orthogonal projections with ~60,000 MPPCs via WLS fibers
- \rightarrow Large active target (~2 t), Fine granularity, 4π acceptance

Challenges for MPPC & its interface

- Current FGD (bar array) has enough space for MPPC & its interface
- On the other hand, SuperFGD has 3 readout view, neighboring to other detectors and electronics → Compact design & less materials are required

Surface-mount MPPC

https://www.hamamatsu.com/ resources/pdf/ssd/ s13360_series_kapd1052e.pdf

S13360-1325PE (Commercial product)

Item	Specification
Effective photosensitive area	1.3 mm x 1.3 mm
Pixel pitch	$25\mu{ m m}$
Number of pixels	2668 pixels
Fill factor	47%
Package type	Surface mount
Breakdown voltage (V _{BR})	$53 \pm 5 \text{ V}$
Peak sensitivity wavelength	450 nm
Photo detection efficiency	25%
Gain	$7.0 \ge 10^5$
Dark count	70 kcps (typ.)
Crosstalk probability	1%

- \cdot Compact package with less materials, matching diameter of WLS fiber
- Enough gain, high dynamic range, less dark count & less cross-talk
 6/15

Design of optical interface

- WLS fibers (1.0 mm diameter) are glued and polished with fiber connectors and individually inserted to holes on the box surface
- MPPCs (1.3 mm x 1.3 mm) are precisely mounted on PCB with 1 cm pitch and MPPC-PCB (8x8 or 8x16) is fixed on box to contact with fiber-end
- \rightarrow Need mechanical accuracy to provide uniform light collection

Prototype of MPPC-PCB

PCB

- 4 layers (1.6 mm thickness)
- Signal and bias lines are printed
- Surface-mount connector is mounted in a back face
- Holes for screw & alignment are also prepared

Solder paste Mounting device Reflow oven

- 1. Solder is pasted on the PCB with a metal mask and a dedicated device
- 2. MPPCs are mounted with good accuracy
 - (*) 50 μ m precision by laser and image recognitions
- ¹ 3. Solder paste is cured by a reflow oven _{8/15}

Test of mechanical accuracy

• 3D measurement device (KEYENCE VR-3000 series) was used, configuring the device to provide 5 μ m precision

Prototype of MPPC optical interface

First prototype of 1D interface was designed to validate optical & electric specifications, to be connected with available electronics

Assembly of the MPPC optical interface

Prototype of the optical interface was assembled w/ scintillator cubes Gain & observed PE for 25 MPPCs were then measured using comic rays

Test results

Entries 10⁴ Β

Entries 10⁴

Entries 10³

Calculated gain from 0 and 1 PE
 by fitting the Double Gaussian

- Photon counting capability for all MPPC channels
- Less ch-to-ch variation of gain (RMS/Mean = ~4%)
- Small variation of observed PE at MIP peak (RMS/Mean = ~7.3%)
- No optical cross-talk between MPPCs
- \rightarrow Confirmed no problem in electrical & optical specifications

F

Entries 10⁴

D

<u>ම</u>10'

Electronics

 The electronics will be a customized system based on CITIROC readout system used in the BabyMIND detector (Currently operative in the ND site at J-PARC)

- 4 CITIROC chips on board (32 x 4 MPPC channels, Low/high gain, Charge)
- FPGA at 400 MHz (Time Stamp, Time-over-Threshold)

- FEBs are placed on left/right side of SuperFGD
- Analogue signal from MPPCs to FEB via micro-coaxial cables

Status & Prospects (related w/ SuperFGD)

2018

- CDR submitted to J-PARC/PAC & CERN/SPSC in January
- Beam tests of SuperFGD prototype
 - 8x24x48 cubes & BabyMIND electronics at CERN T9 (June 27 July 11)
 - 5x5x5 cubes & 3 MPPC interfaces in Nov. at ELPH, Tohoku (Nov. 13-15)
- \cdot TDR submitted to J-PARC/PAC in November

2019-2020

- Further R&D to finalize detector design
- Production/integration of detector components (e.g. Ship complete for all MPPCs by early 2020)

2021

- \cdot SuperFGD will be ready for installation in mid-2021
- Install the upgrade detector & start commissioning

Plan to implement ND280 upgrade timely with the beamline upgrade

Summary

- We plan to equip ~60,000 MPPCs to build novel plastic scintillator detector, called SuperFGD, for T2K near detector upgrade
- Surface-mount MPPC is a perfect device for this purpose to provide very compact design & less material budget
- We developed MPPC-PCB & optical interface and then validated mechanical, electrical and optical specifications
- We will finalize R&D and proceed production/integration toward full detector in order to install the upgrade detector in 2021

Backup

Designs & devices for MPPC-PCB prototype

Front layer

0 ()				🔘
	88 EE	88 00	88 EE	66 00	
	66 00	99 50 0	ϡ œ	88 EE	
•	55 55		8 8 9 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u>66</u> cc	
	66	<u>66</u> EE	°° ⊡ ₽₽	<u>66</u> cc	
	86 CC	99 EE	86 CC		
•			<u>.</u>		•

2nd layer

Chip mounting device (JUKI KE-2060M)

Reflow oven (ANTOM SOLSYS-6310IR)

3rd layer

Reel packing

Standard packing specifications (S13720-1325PS)

Reel (conforms to JEITA ET-7200)

Dimensions	Hub diameter	Tape width	Material	Electrostatic characteristics
180 mm	60 mm	8 mm	PS	Conductive

Embossed tape (unit: mm, material: PS, conductive)

Packing quantity 1000 pcs/reel

Packing type

Reel and desiccant in moisture-proof packaging (vacuum-sealed)

https://www.hamamatsu.com/resources/ pdf/ssd/s13720_series_kapd1060e.pdf

Gain calibration & photon counting capability

Test with scintillation light + EASIROC module

Test with LED + CITIROC module

