

CATIROC : smart readout ASIC for JUNO SPMT

S. BLIN, S. CONFORTI, C. de LA TAILLE, F. DULUCQ, G. MARTIN-CHASSARD

JUNO (Jiangmen Underground Neutrino Observatory)

A multipurpose **neutrino experiment** designed to determine neutrino mass hierarchy with a **20,000 tons liquid scintillator detector** at 700-meter deep underground

~ 18,000 PMTs (20" diameter) \rightarrow Large-PMT system (LPMT) \rightarrow 75 % of the inner surface ~ 25,000 PMTs (3" diameter) \rightarrow Small-PMT system (SPMT) \rightarrow Increase coverage of the surface \rightarrow Improve energy reconstruction

Cross calibration

Small PMT (SPMT) system

HZC Photonics (XP72B22) Production rate: 2000/month Gain (at JUNO): 3 10⁶ QE x CE (at 420nm): 24% SPE Resolution: 35% Dart Rate at ¼ PE: 1kHz Transit Time Spread: 5ns

- Small PMT : single photon
 counting mode
- 128 Small PMTs with a readout system: the Under Water Box (UWB)
- Control Unit: Same board as LPMT system
- A dedicated FEB based 8
 CATIROCs:
 - Auto trigger
 - Gain variable (HV non uniformity correction)

Small PMT front-end board

- SPMT front-end with 8 ASIC CATIROC each of 16 channels
- **FPGA** (Kindex 7 425-T)+ 2GB DDR3 **RAM memory** (large storage and processing on board)
- 4 connector (2 ERNI, 2 SAMTEC) x 32 signals (CATIROC inputs)
- Power supply for ASIC and FPGA
- Low cost concept (one board/ 128 PMTs/ one under water cable to send out data)

A complex System on Chip (SoC). Technology: 0.35 µm SiGe AMS

CATIROC general features	Application to JUNO
16 independent channels	Reduce the number of electronic board (only 200 boards for 25,000 SPMTs)
Analog F.E. with 16 trigger outputs + charge and time digitization	Single Photon counting + charge and time measurements. Resolutions very good
Autotrigger mode: all the PMTs signals above the threshold (1/3 p.e.) generate a trigger and are converted in digital data	Simplify online-DAQ
100% trigger efficiency @ 1/3 p.e.	Good 1 p.e. detection photon counting mode
Dual gain front-end : HG and LG channel Charge dynamic range 0 to 400p.e. (at PMT gain 10 ⁶)	Only HG actually used (only few p.e. expected)
Time stamping (resolution ~ 170 ps rms)	< 1 ns required
Each channel has a variable gain	To compensate gain vs HV spread for the 16 PMTs
One output for DATA	Less number of cables to the surface
Hit rate 100 kHz/ch (all channels hit) 50 bits of data / hit channel	Very "light" data output (compared to a FADC waveform)

CATIROC schematic: 16 channel totally independent

Sylvie BLIN: CATIROC DP18

CATIROC performances

Charge linearity			TDC RAMP			
Slow Control and probe	Advanced controls	FPGA Loïc DC Analog blo	ocks DAC linearity	SCurve Pedestal	SCurve input charge	Hold SCA
TRANSMIT SLOW CONT	ROL BITS	Board detected ? Device detect by "USBfind" 0	ed usbid DeviceDer -1 PCB_Cati	scription Serial N	RESET Slow co	
Path D:\CATIROC\data	File name VTet_CATIR Output file DACATIR	IOC_ASIC	Write slow control data bits per bits in a file	entrée d'erreur etat tode d'1075676294 MSA Read dans LCDSO B Read 1 Single) LCDS Bace (Low e 1 d'anneed d	Sofie d'erreul etat code etat code etational discrete Visk Read dam (COSO) Bate Read 1 (Single)etations 1 Software a discrete 1	
Enable input test choice	e: Channel n' Jo	Slow shaper time HG Sons	Slow shaper time LG 50ns Gain (50ns) LG	Mask DISCRI all none	Db mode selection	CHIIS
Gain selection way: Same for all	Channel	Discri time Discri 850 820	charge Trigger Dela	y C	2 mai	
Gain all others	Gain single channel				RESET probe	
ADC inputs ADC ramp 160MHz 00: charge and time 10: time and charge 01: HG and LG charge 11: ADCs calibration		Register (Analog) Preamplifier HG	Register (Digit None Channel	cal 1) Re	egister (Digital2) None	
		for Analog probe CH0	for digital pro CH0	be 1 fo	r digital probe 2 CH0	

Chip status:

Submission: **February 2015** Received: July 2015

Process: AMS 0.35 µm SIGe

Die dimensions: 3.3 mm x 4 mm (13.2 mm²)

Packaging: TQFP208

Power Supply: 3.3V

Dissipation: 20mW/ch on 3.3 V

Clocks: 40 MHz (Coarse time) and 160 MHz (Conversion)

The input signal is made by a pulse generator signal: a negative voltage pulse (rise time= 5ns, fall time= 5ns, width= 10 ns, Amplitude @1 p.e.~ 0.8 mV). The M.I.P. is 1 p.e.= 160 fC @ PMT gain 10⁶

Trigger efficiency

The trigger efficiency is investigated by scanning the threshold (by the internal DAC) for a fixed channel and monitoring the discriminator response.

Minimum threshold= Pedestal mean value (DACu)- 5 σ (DACu)= 968 DACu (~ 28 fC)

Scurves uniformity

Charge resolution and linearity

	HG charge performance	LG charge performance
Linearity residuals	< 0.7 % Up to 50 p.e.	< 1 % up to 400 p.e.
LSB	10 fC/ADCu → 16 ADCu/ 1 p.e.	80 fC/ADCu
Charge resolution	1.5 ADCu (HG) ~ 15 fC	1.2 ADCu (LG) ~ 100 fC

JUNO Application: photon counting mode => only the HG path.

charge resolution and linearity are OK

Time measurements

The ASIC provides the signal "time of arrival" operating in self-triggered mode.

The time measurement is composed of two values:

- The "coarse time" (Timestamp)
 - 26-bit Gray Counter with a resolution of 25 ns
 - This time is saved in a 26-bit register when the channel has a trigger indicating a detected signal.
- The "fine" time
 - Two TAC ramps in each channel to reach 200ps resolution

Hit rate measurements

HIT RATE							
Tconv (1 ch)	6.4 µs	Tconv (16 ch)	6.4 µs				
Tread-out (1 ch)	0.36 µs	Tread-out (16 ch)	3 µs				
Tcycle (1 ch)	6.8 µs	Tcycle (16 ch)	9.4 µs				
Hit rate (1 ch)	150 kHz	Hit rate (16 ch)	100 kHz				

The maximum conversion time $Tconv = \frac{2^n}{F_{conv}} = 6.4 \ \mu s$ The maximum readout time $TimeRO = \frac{Nchannels \ x \ Nbits}{F_{RO}}$

SPMT

mega

HIT RATE on CATIROC data output

Worst case (16 cannels): hit rate < 120kHz

=> acceptable for JUNO events

For some rare event case (supernova): too low

- \Rightarrow Photon counting with the 16 triggers
 - \Rightarrow Photon counting double pulse

resolution= ~ 15MHz

JUNO: charge measurement + counter trigger

Test-bench @ Subatech Nantes

light-tight box of 1m x 1m

3" PMT HZC XP72B22

LED : λ =470 nm

Subatech

SPMT

Sylvie BLIN: CATIROC DP18

Single p.e. with PMT + Catiroc

Ping-pong: charge difference < 5 %

Good charge uniformity (only 2 chs)

Wiggles due to the clock coupling : do not affect spe accuracy

Conclusions

- CATIROC is an innovative concept for cost-effective readout of large photomultiplier areas
 - Auto-triggered, zero-suppressed charge and time measurement on 16 independent channels
- CATIROC performances fit well the needs of JUNO-SPMT:
 - 100% trigger efficiency @ 1/3 p.e. (50 fC @ PMT gain 10⁶)
 - Charge resolution (**only HG used**) : 1.5 ADCu ~ **15 fC** (160fC @ PMT gain 10⁶)
 - Time resolution= 167 ps rms
- Project ongoing:
- Tests with the HZC 3" PMT show
 - Good p.e. spectrum
 - Some features (ping/pong and wiggles) that have no significant effects on the data taking
- 9000 SPMTs (HZC XP72B22) have been produced and tested (1% rejected)
- Front End Board V0 is testing => new version (beginning of 2019)
- 2000 ASICs CATIROC production at the end of 2018
 - Clock coupling corrected

CATIROC datasheet: Selma Conforti sconforti@omega.in2p3.fr

Application of PMm² project : PARiSROC & CATIROC

- Photomultiplier ARray Integrated SiGe Read Out Chip (2010)
 - « Large area PMT array » with centralized ASIC
 - Auto-trigger at 1/3 p.e.
 - Charge and time measurement (10-12 bits)
 - Data driven : « One cheap wire out »
- Evolved into CATIROC : Charge and Time Reat Out Chip (2015)
 - Larger readout rate (~50 kHz)

Gain adjustment

• 8 bits channel-wise : 1 to 4 range, per-cent accuracy

Electronics jitter and time walk

- Jitter measured on discriminator output
- Time walk ~ 5 ns

