

5th International Workshop on New Photon-Detectors PD18

"Operation of multi-MPPC system for cylindrical scintillation fiber tracker"

Yuya Akazawa (KEK) for the J-PARC E40 collaboration

akazawa akawaza akazawa akazawa

Contents

Cylindrical Fiber Tracker

Introduction

- Motivation and requirements
- Specifications
- Fabrication
 - Fiber placement
 - PPD Read-out
- Performances for pion and proton
 - Tracking resolution
 - Particle ID via ΔE-E correlation

akazawa akawaza akazawa akazawa

акагаwа акагаwа

∑p scattering experiment (J-PARC E40)

• Σp scattering experiment in J-PARC, Japan \Rightarrow Study of ΣN interaction

Measurement of $d\sigma/d\Omega$ of Σp scattering with high statistics

Purpose

CATCH

(Cylindrical Active $\underline{Tracker}$ and

- **<u>Calorimeter</u>** system for Hyperon-proton scattering)
- Cylindrical Fiber Tracker(CFT)
- BGO Calorimeter

∑p scattering experiment (J-PARC E40)

• Σp scattering experiment in J-PARC, Japan \Rightarrow Study of ΣN interaction

Purpose

Measurement of $d\sigma/d\Omega$ of Σp scattering with high statistics

akazawa akazawa

∑p scattering experiment (J-PARC E40)

• Σp scattering experiment in J-PARC, Japan \Rightarrow Study of ΣN interaction

Purpose

Measurement of $d\sigma/d\Omega$ of Σp scattering with high statistics

akazawa akazawa

акагаwа акагаwа

∑p scattering experiment (J-PARC E40)

• Σp scattering experiment in J-PARC, Japan \Rightarrow Study of ΣN interaction

Purpose

Measurement of $d\sigma/d\Omega$ of Σp scattering with high statistics

akazawa akazawa

"CATCH"

Main topics : operation of CFT Measurement of <u>trajectories</u> & <u>energy deposit</u> by CFT with combination of <u>scintillation fibers</u> & <u>MPPCs</u>

Cylindrical Fiber Tracker (CFT)

Three dimensional tracking

- ⇒ Two types of fiber arrangement
 - 4 Straight layers (Parallel to the beam axis)
 - 4 Spiral layers (Along the side of cylindrical shape)

Fibers	1st	2nd	3rd	4th
Straight layer	584	692	800	910
Spiral layer	426	472	510	538

Each fiber signal is read by MPPC fiber by fiber.

Fiber : 0.75 mmΦ (Kuraray SCSF-78M) MPPC : 1 × 1 mm², 400 pixels (HPK S10362–11–050P)

Cylindrical Fiber Tracker (CFT)

Three dimensional tracking

- ⇒ Two types of fiber arrangement
 - 4 Straight layers (Parallel to the beam axis)
 - 4 Spiral layers (Along the side of cylindrical shape)

Fibers	1st	2nd	3rd	4th
Straight layer	584	692	800	910
Spiral layer	426	472	510	538

Each fiber signal is read by MPPC fiber by fiber. Fiber : 0.75 mmΦ (Kuraray SCSF-78M) MPPC : 1 × 1 mm², 400 pixels

(HPK S10362-11-050P)

Cylindrical Fiber Tracker (CFT)

Three dimensional tracking

- ⇒ Two types of fiber arrangement
 - 4 Straight layers (Parallel to the beam axis)
 - 4 Spiral layers (Along the side of cylindrical shape)

Fibers	1st	2nd	3rd	4th
Straight layer	584	692	800	910
Spiral layer	426	472	510	538

Each fiber signal is read by MPPC fiber by fiber. Fiber : 0.75 mmΦ (Kuraray SCSF-78M) MPPC : 1 × 1 mm², 400 pixels

(HPK S10362-11-050P)

Cylindrical Fiber Tracker (CFT)

Three dimensional tracking

- ⇒ Two types of fiber arrangement
 - 4 Straight layers (Parallel to the beam axis)
 - 4 Spiral layers (Along the side of cylindrical shape)

Fibers	1st	2nd	3rd	4th
Straight layer	584	692	800	910
Spiral layer	426	472	510	538

Each fiber signal is read by MPPC fiber by fiber. Fiber : 0.75 mmΦ (Kuraray SCSF-78M) MPPC : 1 × 1 mm², 400 pixels

(HPK S10362-11-050P)

akazawa akawaza akazawa akazawa akazawa akazawa

Fabrication of CFT

akazawa akazawa

Fiber Placement : "Straight layer"

akazawa akazawa

Fiber Placement : "Spiral layer"

Fiber position is decided at each 45° for realizing the spiral shape.

akazawa akazawa

CFT Readout

Number of Readout : ~5,000 channel

akazawa akawaza akazawa akazawa akazawa akazawa

CFT Readout

akazawa akawaza akazawa akazawa akazawa akazawa

- Reconstruction of trajectories
- Measurement of Energy deposit \Rightarrow Particle separation of π /proton

Operation of CFT

akazawa akazawa

Operation of CFT

A part of the Σp scattering experiment was performed in June 2018. 10 MHz π beam was used and 2 MHz singles rate was estimated for CFT.

Operation of CFT

A part of the Σp scattering experiment was performed in June 2018. 10 MHz π beam was used and 2 MHz singles rate was estimated for CFT.

CFT measured trajectories even in the high rate environment.

n azawa akazawa akazawa akazawa akazawa akazawa akawaza akazawa akazawa akazawa akazawa

Operation of CFT

A part of the Σp scattering experiment was performed in June 2018. 10 MHz π beam was used and 2 MHz singles rate was estimated for CFT.

Operation of CFT

A part of the Σp scattering experiment was performed in June 2018. 10 MHz π beam was used and 2 MHz singles rate was estimated for CFT.

Operation of CFT

TDC and **ADC** for all fiber channel was taken.

Energy calibration

× 8 layers

Fibers	1st	2nd	3rd	4th
Straight layer	584	692	800	910
Spiral layer	426	472	510	538

MPPC bias voltage is modified with the EASIROC board.

 \Rightarrow Gains could not be unified completely.

Due to noise and so on

Operation of CFT

TDC and **ADC** for all fiber channel was taken.

Energy calibration

We calibrated the energy for each layer as a first step.

(\Rightarrow It is better to do it for each channel.)

We normalized the each MPPC gain with the MIP peak for unified handling.

Operation of CFT

TDC and **ADC** for all fiber channel was taken.

Energy calibration

scattered π' & recoil p' from πp scatt.

Operation of CFT

TDC and **ADC** for all fiber channel was taken.

Energy calibration

akazawa akazawa

Particle identification

Since pions from Σ decay and π beam etc. are measured together with protons, particle discrimination is necessary.

 $\Rightarrow \Delta E - E$ correlation

Particles pass through CFT and stop in BGO calorimeter

Particle identification

Since pions from Σ decay and π beam etc. are measured together with protons, particle discrimination is necessary.

$\Rightarrow \Delta E - E$ correlation

Particles pass through **CFT** and stop in **BGO calorimeter**

Although analysis is still on going, the separation of proton and π was performed by CATCH system.

akazawa akazawa

Summary

- A new Σp scattering experiment
 - For study of ΣN interaction
 - dσ/dΩ with high statistics is necessary
 ⇒ A new detector system "CATCH" which measures <u>Trajectories</u> and <u>Energies</u>
 - It is started from June in 2018.
- Development of Cylindrical Fiber Tracker
 - Two fiber arrangements : Straight and Spiral layers
 - About 5,000 fibers are read by MPPCs.
 MPPCs are read and operated by VME EASIROC boards. ⇒ ADC, TDC
- Performance of CFT
 - Angular resolution of CFT ••• $\sigma_{\theta} = 1.6^{\circ}$
 - Energy resolution •••20%(σ) @ 8~20 MeV proton
 - Time resolution ••• 2 $ns(\sigma)$
- Operation in the Σp scattering experiment
 - CFT works under 10 MHz π beam environment.
 - π and proton is separated with $\Delta E\text{-}E$ correlation

