$5^{\text {th }}$ International Workshop on New Photon-Detectors PD18

Yuya Akazawa (KEK) for the J-PARC E40 collaboration

Contents

$>$ Introduction

- Motivation and requirements
- Specifications
> Fabrication
- Fiber placement
- PPD Read-out
> Performances for pion and proton
- Tracking resolution
- Particle ID via $\Delta E-E$ correlation

Σp scattering experiment (J-PARC E40)

Purpose

- Σp scattering experiment in J-PARC, Japan \Rightarrow Study of ΣN interaction

Measurement of $d \sigma / d \Omega$ of $\sum p$ scattering with high statistics

Setup

J-PARC K1.8 beam line

- Target : Liquid $\mathrm{H}_{2}(300 \mathrm{~mm}$ thick)
- π beam 20M[/spill] (spill2s)
- $\pi^{-}: 1.32[\mathrm{GeV} / \mathrm{c}], \pi^{+}: 1.4[\mathrm{GeV} / \mathrm{c}]$
- Scattered K^{+}
- $0.6^{\sim} 0.9[\mathrm{GeV} / \mathrm{c}]$

CATCH
(Cylindrical Active Tracker and Calorimeter system for
Hyperon-proton scattering)

- Cylindrical Fiber Tracker(CFT)
- BGO Calorimeter

$\sum \mathrm{p}$ scattering experiment (J-PARC E40)

Purpose

- Σp scattering experiment in J-PARC, Japan \Rightarrow Study of $\Sigma \mathrm{N}$ interaction Measurement of $d \sigma / d \Omega$ of $\sum p$ scattering with high statistics

Setup

J-PARC K1.8 beam line

- Target : Liquid $\mathrm{H}_{2}(300 \mathrm{~mm}$ thick)
- π beam $20 \mathrm{M}[/$ spill] (spill 2 s)
- $\pi^{-}: 1.32[\mathrm{GeV} / \mathrm{c}], \pi^{+}: 1.4[\mathrm{GeV} / \mathrm{c}]$
- Scattered K^{+}
- 0.6~0.9[GeV/c]

Reaction

CFT
BGO

Σ p scattering experiment (J-PARC E40)

Purpose

- Σp scattering experiment in J-PARC, Japan \Rightarrow Study of ΣN interaction

Measurement of $d \sigma / d \Omega$ of $\sum p$ scattering with high statistics

Setup

J-PARC K1.8 beam line

- Target : Liquid H_{2} (300 mm thick)
- π beam $20 \mathrm{M}[/$ spill] (spill 2 s)
- $\pi^{-}: 1.32[\mathrm{GeV} / \mathrm{c}], \pi^{+}: 1.4[\mathrm{GeV} / \mathrm{c}]$
- Scattered K+
- 0.6~0.9[GeV/c]

$\sum \mathrm{p}$ scattering experiment (J-PARC E40)

Purpose

tering experiment in J-PARC, Japan \Rightarrow Study of ΣN interaction
Measurement of $\mathrm{d} \sigma / \mathrm{d} \Omega$ of $\sum p$ scattering with high statistics

Setup

J-PARC K1.8 beam line

- Target : Liquid H_{2} (300 mm thick)
- π beam $20 \mathrm{M}[/$ spill] (spill 2 s)
- $\pi^{-}: 1.32[\mathrm{GeV} / \mathrm{c}], \pi^{+}: 1.4[\mathrm{GeV} / \mathrm{c}]$
- Scattered K+

-Kinetic energy Ep'

$$
\Downarrow \Downarrow
$$

Kinematic consistency will be checked

"CATCH"

Main topics : operation of CFT
Measurement of trajectories \& energy deposit by CFT with combination of scintillation fibers \& MPPCs

Cylindrical Fiber Tracker (CFT)

-Three dimensional tracking

\Rightarrow Two types of fiber arrangement

- 4 Straight layers (Parallel to the beam axis)
- 4 Spiral layers (Along the side of cylindrical shape)

Fibers	1st	2nd	3rd	4th
Straight layer	584	692	800	910
Spiral layer	426	472	510	538

Each fiber signal is read by MPPC fiber by fiber. Fiber : 0.75 mm (Kuraray SCSF-78M) MPPC : $1 \times 1 \mathrm{~mm}^{2}, 400$ pixels (HPK S10362-11-050P)

Cylindrical Fiber Tracker (CFT)

-Three dimensional tracking

\Rightarrow Two types of fiber arrangement

- 4 Straight layers (Parallel to the beam axis)
- 4 Spiral layers (Along the side of cylindrical shape)

Fibers	1st	2nd	3rd	4th
Straight layer	584	692	800	910
Spiral layer	426	472	510	538

Each fiber signal is read by MPPC fiber by fiber. Fiber : 0.75 mm (Kuraray SCSF-78M) MPPC : $1 \times 1 \mathrm{~mm}^{2}, 400$ pixels (HPK S10362-11-050P)

Straight layer Hit segment measured " Φ " position
Spiral layer z position is obtained by hit segment and Φ

Cylindrical Fiber Tracker (CFT)

-Three dimensional tracking

\Rightarrow Two types of fiber arrangement

- 4 Straight layers (Parallel to the beam axis)
- 4 Spiral layers (Along the side of cylindrical shape)

Fibers	1st	2nd	3rd	4th
Straight layer	584	692	800	910
Spiral layer	426	472	510	538

Each fiber signal is read by MPPC fiber by fiber. Fiber : 0.75 mm (Kuraray SCSF-78M) MPPC : $1 \times 1 \mathrm{~mm}^{2}, 400$ pixels (HPK S10362-11-050P)

Straight layer Hit segment measured " Φ " position
Spiral layer z position is obtained by hit segment and Φ

Cylindrical Fiber Tracker (CFT)

-Three dimensional tracking

\Rightarrow Two types of fiber arrangement

- 4 Straight layers (Parallel to the beam axis)
- 4 Spiral layers (Along the side of cylindrical shape)

Fibers	1st	2nd	3rd	4th
Straight layer	584	692	800	910
Spiral layer	426	472	510	538

Each fiber signal is read by MPPC fiber by fiber. Fiber : $0.75 \mathrm{~mm} \Phi$ (Kuraray SCSF-78M) MPPC : $1 \times 1 \mathrm{~mm}^{2}, 400$ pixels (HPK S10362-11-050P)

Straight layer Hit segment measured " Φ " position
Spiral layer z position is obtained by hit segment and Φ

Fabrication of CFT

- Fiber placement
- Straight layer
- Spiral layer
- MPPC Readout

Fiber Placement : "Straight layer"

Each fiber passes through a hole on the "Fiber fix frame"

Two fiber fixing frames are installed at both ends of the measurement region.

Fiber Placement : "Spiral layer"

CFT Readout

A circuit mounting 32 MPPCs

Number of Readout : ~5,000 channel

CFT Readout

A circuit mounting 32 MPPCs

Readout frame

ADC , TDC , bias adjustment etc...
$64 \mathrm{ch} / \mathrm{board}$ (2 EASIROC chip)
EASIROC chip : proceedings of NDIP 2011 Omega/IN2P3 EASIROC board : R. Honda PD12

Number of Readout : $\sim 5,000$ channel $\Downarrow \Downarrow$
32 MPPC circuits $\times 157$ VME-EASIRO ${ }^{+}$board $\times 79$

Operation of CFT

- Reconstruction of trajectories
- Measurement of Energy deposit
\Rightarrow Particle separation of π /proton

Operation of CFT

Operation of CFT

Operation of CFT

Operation of CFT

| ~ 2014 |
| :--- |\quad Prototype test

CFT measured the scattering angle θ. BGO energy was calibrated with the correlation between θ and $E p^{\prime}$.

Operation of CFT

Operation of CFT

A part of the Σp scattering experiment was performed in June 2018. $10 \mathrm{MHz} \pi$ beam was used and 2 MHz singles rate was estimated for CFT.

Operation of CFT

A part of the Σp scattering experiment was performed in June 2018. $10 \mathrm{MHz} \pi$ beam was used and 2 MHz singles rate was estimated for CFT.

CFT measured trajectories even in the high rate environment.

PiID Counter :

Almost π penetrates the BGO calorimeter \Rightarrow hit information of the PilD counter helps the separation of π / proton.

Operation of CFT

A part of the Σp scattering experiment was performed in June 2018. $10 \mathrm{MHz} \pi$ beam was used and 2 MHz singles rate was estimated for CFT.

CFT measured trajectories
even in the high rate environment.

Energy calibration of BGO calorimeter was performed by the pp scattering data.

PilD Counter :

Almost π penetrates the BGO calorimeter
\Rightarrow hit information of the PiID counter helps

Operation of CFT

A part of the Σp scattering experiment was performed in June 2018. $10 \mathrm{MHz} \pi$ beam was used and 2 MHz singles rate was estimated for CFT.

CFT measured trajectories
even in the high rate environment.

PilD

PilD Counter :

Almost π penetrates the BGO calorimeter
\Rightarrow hit information of the PilD counter helps the separation of π / proton.

Energy calibration of BGO calorimeter was performed by the pp scattering data.

Operation of CFT

TDC and ADC for all fiber channel was taken.

Energy calibration

$\times 8$ layers

Fibers	1st	2nd	3rd	4th
Straight layer	584	692	800	910
Spiral layer	426	472	510	538

MPPC bias voltage is modified with the EASIROC board.
\Rightarrow Gains could not be unified completely.
Due to noise and so on

Operation of CFT

TDC and ADC for all fiber channel was taken.

Energy calibration

We calibrated the energy for each layer as a first step. (\Rightarrow It is better to do it for each channel.)
We normalized the each MPPC gain with the MIP peak for unified handling.

Operation of CFT

TDC and ADC for all fiber channel was taken.

Energy calibration

scattered $\pi^{\prime} \&$ recoil p^{\prime} from πp scatt.

Operation of CFT

TDC and ADC for all fiber channel was taken.

Energy calibration

Particle identification

Since pions from Σ decay and π beam etc. are measured together with protons, particle discrimination is necessary.
$\Rightarrow \Delta E-E$ correlation
Particles pass through CFT and stop in BGO calorimeter

Particle identification

Since pions from Σ decay and π beam etc. are measured together with protons, particle discrimination is necessary.
$\Rightarrow \Delta E-E$ correlation
Particles pass through CFT and stop in BGO calorimeter

Although analysis is still on going, the separation of proton and π was performed by CATCH system.

Summary

- A new Σ p scattering experiment
- For study of ΣN interaction
- $\mathrm{d} \sigma / \mathrm{d} \Omega$ with high statistics is necessary
\Rightarrow A new detector system "CATCH" which measures Trajectories and Energies
- It is started from June in 2018.
- Development of Cylindrical Fiber Tracker
- Two fiber arrangements : Straight and Spiral layers
- About 5,000 fibers are read by MPPCs.

MPPCs are read and operated by VME EASIROC boards. \Rightarrow ADC, TDC

- Performance of CFT
- Angular resolution of CFT $\cdots \sigma_{\theta}=1.6^{\circ}$
- Energy resolution $\cdot \cdot 20 \%(\sigma)$ @ 8~20 MeV proton
- Time resolution $\cdots 2 \mathrm{~ns}(\sigma)$
- Operation in the Σp scattering experiment
- CFT works under $10 \mathrm{MHz} \pi$ beam environment.
- π and proton is separated with $\Delta \mathrm{E}-\mathrm{E}$ correlation

