

Hyper-Kamiokande

Multi-PMT modules for the Hyper-Kamiokande project

Benjamin Quilain (Kavli IPMU, The University of Tokyo) for the Hyper-Kamiokande proto-collaboration

Introduction
 multi-PMT for HK near detector : E61

 Multi-PMT for HK
 Measurement of their characteristics

 PD18 workshop, the University of Tokyo 2018/11/29

The Hyper-Kamiokande experiment

• 260 kton water Cherenkov detector. \rightarrow FV mass = 186 kton ~ 8 x SK

Astrophysics

Constrains Supernovae models.

Constrains cosmic star formation history.

Solar v physics MSW effect in the Sun

Non-standard interactions in the Sun

The E61 intermediate detector

- CP violation search based on accelerator ν : T2HK
 - $\rightarrow v_{e}$ appearance in a v_{μ} beam and v_{μ} disappearance & \overline{v} equivalents.

Multi-PMT modules for E61

- E61 inner detector will be exclusively instrumented with ~500 multi-PMT modules.
- 19 x 3'' PMTs (Hamamatsu 14374)

PMT top view

Impact of mPMT on E61 performances

• <u>Goal</u> : constrain the v_{μ} , v_{e} energy spectra before oscillation. It requires :

- <u>mPMT results are not optimized</u> (PMT directionality not implemented)
- Still, 3" multi-PMT modules highly increases E61 abilities !

HK photo-detectors

• <u>New 20'' High-quantum efficiency Box&Line PMT</u> : See C. Bronner's talk

Position angle [degree]

	SK PMTs	HK B&L PMT	
Photo-cathode diameter	20''	20''	
Quantum efficiency	22 %	31 % (QE x CE = 2 x SK)] ✔
Transit Time spread (TTS)	> 5 ns	2.6 ns	
Dark rate @13 degrees	4 kHz	8.4 kHz (<u>goal :</u> 4 kHz)	×

mPMT modules for Hyper-K

- Can mPMTs enhance HK physics as a complement of 20" PMTs ?
- <u>Smaller size</u>: Better PID,
 Better reconstruction near wall → Increase FV.
- <u>Better timing resolution</u>: better vertex resolution \rightarrow enhanced momentum resolution.
- Dark rate in negative HV = 200Hz: \rightarrow Signal/Noise ratio ~ 20''.
- Dark rate in positive HV ≤ 100Hz:
 S/N ~ 2 x 20" → Can probe lower energies ?
- <u>Cons</u> : \rightarrow Less effective coverage than 20''.

A. Coffani (LLR) mPMT low energy performances B. Quilain

• Vertex resolution improved w/ mPMT for $dWall \le 8m \rightarrow FV$ expansion

• mPMT allows to explore < 5 MeV region.

One example of impact on physics

• Improved S/N : Probe low energy (3 MeV) \rightarrow detect Solar up-turn ?

• Higher n tagging efficiency/purity on H? \rightarrow Crucial for SNR ν

- Less noise in 100µs (capture on H)
- 3" PMTs can enhance HK physics

Testing of 3" PMTs in the world

• Currently tested in the UK, Canada, Poland, Italy and Japan.

XY stage

• I will focus on measurements at IPMU, which provided latest results.

4

Measurement setup at IPMU

Gain measurement

• Both negative and positive high voltage are tested.

• Gain measurement is :

- $1. = 10^7 @ 1265V.$
- 2. stable (confirms our IPMU setup stability).
- 3. compatible between positive and negative HV

Timing measurement

- Transit time spread (TTS) is measured as a function of HV.
- $T_{PMT} T_{trigger}$ fitted with a gaussian convoluted with exponential : $\rightarrow I(y) = F(x) * G(x)$ TTS = I(y) FWHM

• Excellent TTS (<1.5ns), smaller than assumed in simulation (2.0 ns) \rightarrow Reduced to 1.3 ns @1265V (gain = 10⁷)

N.Izumi (TUS) B. Quilain M. Hartz

Asymmetry measurement

- Variation of TTS as a function of the photon :
 1. Incident position on PMT photocathode.
 - 2. Incident angle with the PMT photocathode.

Designed motorized stage to move LED

• Small efficiency asymmetry \rightarrow under study. TTS almost flat except for 1 point \rightarrow under study.

Time walk corrected

On-going measurements

- Impact of reflector on detection efficiency → Ongoing @IPMU
- B-field impact on $3^{\prime\prime}$ PMT \rightarrow On-going @TUS.
- Dark rate → Cannot be done @IPMU with current setup → In Canada ? Upgrade our setup ?

Conclusions and future

- 3" multi-PMT modules largely increases Hyper-K near detector abilities → Represents E61 baseline PMT.
- Their use in Hyper-K far detector is under study → Complementary to 20" PMT : Very high timing resolution + Low dark rate.
 → Increased Fiducial Volume, vertex resolution & energy threshold
 → I showed you very first results. Many other studies are incoming.

End of 2018

- <u>Simulation will be updated to an hybrid detector :</u> 20" PMT + 3" PMT.
- A large measurement campaign is currently undertaken world-wide
 → Measurements so far : characteristics>expectations/simulation
- mPMT electronics is under-development \rightarrow Available prototype in Italy. 1st Canadian prototype next summer

Additional slides

Benjamin Quilain

2nd : Systematic error reduction

• <u>2. b : Requires a new intermediate detector : E61</u>

1. HK flux = linear combination of different off-axis angles.

2. Take same combination of reconstructed number of neutrinos (e.g. in p_{μ}/θ_{μ}) \rightarrow Drastically reduce use of cross-section models !

> 120 100

0.4×

Results using the high energy fitter

Benjamin Quilain

• Relies on fiTQun high energy fitter

 $L(\mathbf{x}) = \prod_{i=1}^{\text{PMT unhit probability}} PMT \text{ hit probability PMT charge pdf} \\ I(\mathbf{x}) = \prod_{i=1}^{\text{unhit}} P_j(\text{unhit}|\mu_j) \prod_{i=1}^{\text{hit}} \{1 - P_i(\text{unhit}|\mu_i)\} f_q(q_i|\mu_i) f_t(t_i|\mathbf{x})$

PMT timing pdf

13

• <u>Re-generated the tables for mPMT HK :</u>

• Vertex resolution sensibly improved at the tank center $! \rightarrow$ Reduced TTS.

Results using the high energy fitter

14

Benjamin Quilain

- Momentum resolution unchanged @ 500 MeV/c.
- Direction resolution slightly reduced → Fluctuation ?

MPMT design

Benjamin Quilain

14