

Photo-detector System with Large Area SiPM in nEXO

Guofu Cao

On behalf of nEXO Collaboration

Institute of High Energy Physics, Beijing, China

5th International Workshop on New Photon-Detectors, Tokyo, Japan November 27 - 29, 2018

nEXO experiment

nEXO is proposed to search for 0vββ decays of ¹³⁶Xe with sensitivity entirely covering the neutrino mass region of inverted hierarchy, based on 5 tons liquid xenon TPC.

✤ EXO-200

- ~200 kg enriched liquid xenon
- Phase I: Sep. 2011 Feb. 2014
- Phase II: Apr. 2016 -- Dec. 2018

 $T_{1/2}^{0\nu\beta\beta} > 1.8 \ x \ 10^{25} \ yr, \ \langle m_{\beta\beta} \rangle < 147 - 398 \ meV$ (90% C.L.)

Phys. Rev. Lett. 120, 072701 (2018)

* nEXO

- > 5 tones of enriched Xe (>90%)
- Enhanced self shielding.
- Similar detection technology with EXO-200, but with lots of optimizations.
- **Excellent energy resolution (1% at Q of 0vββ) and ultra-low background.**
- Charge collection system and photon-detector system are two key components in TPC.

nEXO sensitivity paper, Phys. Rev. C 97, 065503 (2018)

Conceptual design of nEXO detector

- **5 tones of single phase LXe TPC.**
- ✤ Ionization charge collected by anode.
- Instead of LAAPD, 178nm lights detected by ~4 m² SiPM array behind field shaping rings.

Photo-detector system in nEXO

30 tiles per stave, 1.5 mm gaps between tiles, totally 720 tiles 8 x 8 SiPMs per tile, 10mm x 10mm SiPMs with 0.5mm gaps Totally 46,080 SiPM chips

Photon detection efficiency in nEXO

***** The photon detection efficiency of TPC consists of two parts:

- > Photon transport efficiency (PTE)
 - Optimized detector geometry
 - Reflective electrodes in TPC
 - Reflectivity of SiPM.
- Photon detection efficiency (PDE) of SiPM
 - Determined by filling factor, transmittance, quantum efficiency and trigger efficiency.
 - It can be measured by a standalone setup.
- It's crucial to understand the PDE and reflectivity of SiPM in nEXO, usually this is also the case for other SiPM based detectors.

Parameter	Specification	Comment
Photo-detection efficiency	> 15%	At 170-180nm, including reflectivity
Dark noise rate	< 50 Hz/mm ²	At -104 °C
Correlated avalanche rate	< 20%	At -104 ℃, combing cross-talk and after pulsing integrated within 1µs
Area per channel	1 – 5 cm ²	
Capacitance	< 50 pF/mm ²	For readout electronics
Electronics noise	<0.1 SPE	
Pulse width	< 0.5 μs	
Radio purity	0.1, 1, 10 nBq/cm ²	For ²³⁸ U, ²³² Th and ⁴⁰ K respectively

SiPM characterization

SiPM PDE (at VUV region) and nuisance parameters (in cold)

- ≻ Stanford U.
- > TRIUMF
- ≻ Erlangen
- ≻ BNL
- ≻ IHEP
- ≻ U. of Mass.

Reflectivity of SiPM

- \succ In vacuum or N₂
 - IHEP
 - TRIUMF
- ➢ In liquid xenon
 - U. of Alabama
 - Erlangen
 - UMASS

Tested SiPMs FBK NUV, VUV-LF-HD, VUV-STD-HD Hamamatsu VUV3, VUV4

SiPM PDE at VUV (I)

SiPM PDE at VUV (II)

Nuisance parameters

10.1109/TNS.2018.2875668

Temperature: 169 K

By analyzing output pulses

- ✓ Charge/amplitude spectrum
- **Charge vs time**
- **Time interval**

Nuisance parameters cont.

Preliminary

7

Over-Voltage [V]

6

8

VUV4 SiPM from Hamamatsu (50 um)

Better control of correlated avalanches,

High reflectivity on SiPM surface, it's crucial to make it clear in nEXO.

□ Specular reflection

- ✓ Wavelength: **115 nm 400 nm**
- ✓ Angle of incidence: 5 55 degree

Diffused reflection

IHEP & IOE, China

- ✓ Wavelength: 193 nm
- ✓ The component of specular reflection has been excluded.

Measured samples

- ✓ FBK-VUV-STD, FBK-VUV-LF, silicon wafer (with 1.5um SiO₂)
- ✓ VUV4 (50 um, 75 um) from HPK

Preliminary reflectivity results in vacuum

- Lower specular reflectivity for VUV4, comparing to FBK SiPMs.
- Similar diffused reflections between VUV4 and FBK SiPMs.

Device	Diffuse(193nm)
FBK-VUV-STD	13%
FBK-VUV-LF	10%
VUV4 1# (50 um)	17%
VUV4 2# (75 um)	10%
Silicon wafer*	0.09%

SiPM reflectivity in liquid xenon

SiPM reflectivity in liquid xenon -- LIXO

U. of Alabama

- ✓ Reflectivity measurement of samples in liquid Xenon
 - ➤ active samples: SiPM, etc...
 - passive samples: Quartz, Peek, Teflon, etc...
 - ➢ as a function of angle
 - Parasitic reflections minimized by using VUV absorbing materials
- ✓ Relative PDE of SiPM as a function of angle in liquid Xenon
- ✓ 252 Cf source excites LXe to generate 175 nm light.
- ✓ Collimator + quartz window helps towards preventing radiation damage and light collimation.
 - ✓ Collimator SiPM for triggering and light stability measurement.
- ✓ Detectors are positioned at D1, D2, D3, .. for specular and diffuse reflectivity measurement.
 - Results coming soon.

SiPM exposed to high electrical field

- In nEXO, SiPMs will be exposed to external E-fields up to ~20 kV/cm based on simulation.
- SiPM performance in various Efields at cryogenic temperatures (~150K) have been tested.
- The tested SiPMs show good stability under the influence of different electric field strengths.

T. Tolba, et.al., and the nEXO collaboration, *Study of Silicon Photomultiplier Performance in External Electric Fields*, JINST 13, T09006, 2018.

Silicon interposer

- To support and connect SiPM array and readout electronics
- *** Good CTE match at cryogenic temperature**
- Sood radio-purity
- The first prototype (10x10 cm²) has been made by IME in China.
- ***** The testing work is ongoing.

Large area SiPM readout

* Requirements

- ➢ Very large area, ~4 m²
- > SPE detection capability.
- Need low noise (< 0.1 p.e.) and fast readout.
- Can readout one channel of ~6 cm² with 3-9nF/cm².
- We have investigated relation between sensor area capacitance, readout noise, power and shaping time.
- * Analog readout
 - Both series and parallel connections are under testing.

- ✤ ~4 m² VUV sensitive SiPM will be used to detect scintillation lights in nEXO.
- * Lots of efforts have been made to measure SiPM characterization (from different vendors) at VUV wavelength and cryogenic temperature, and the results look promising for nEXO.
- The surface structure of SiPM (ARC) should be optimized, in order to suppress reflections and enhance the PDE of SiPM and overall photon detection efficiency in detector.
- **SiPMs become more and more attractive for many large scale cryogenic detectors, due to its good performance and radio-purity.**

Thank you for your attention!