

Performance of the MCP-PMTs of the TOP counter in the first beam operation of the Belle II experiment

K. Matsuoka (KMI, Nagoya Univ.)

on behalf of the Belle II TOP group

5th International Workshop on New Photon-Detectors (PD18), Tokyo, Nov. 29, 2018

The Belle II experiment

B-factory experiments

Confirmed Kobayashi-Maskawa theory with > 1 ab⁻¹ data

Search for new physics via precisio measurements with 50 ab⁻¹ data

Challenge on the detector

- Cope with harsh beam background
- Improve the performance

Barrel PID \rightarrow TOP counter

Next generation B-factory experiment

Belle II

TOP counter

- State-of-the-art Cherenkov ring imaging detector
- K/π identification by means of β reconstruction using precise timing measurement of internally reflected Cherenkov photons

Key techniques:

- ✓ Propagate the "ring" image undistorted
- ✓ Detect the photons with a high efficiency (~20 hits/track) and with an excellent time resolution (<50 ps)</p>

 \rightarrow Only MCP-PMTs can meet the requirements.

MCP-PMT for the TOP counter

- Square shape multi-anode MCP-PMT with a large photocoverage
 - Developed for the Belle II TOP counter at Nagoya in collaboration with Hamamatsu

The best time resolution $(\sigma \sim 30 \text{ ps})$ of photon sensors

Performance of the MCP-PMT

ADC distribution for single photons

TDC distribution for single photons from picosecond pulse laser

QE distr. at 360 nm

0.2

Performance in B-field

Mass-production of the MCP-PMTs

- Unprecedented production of 512 (and spare) MCP-PMTs.
- In parallel, R&D for life extension.
 - Eventually three types of MCP-PMTs (Next talk by Muroyama-san)

Succeeded in time for the TOP installation in May 2016.

 Mass-production is continued for the replacement of the 224 conventional MCP-PMTs in 2020 summer.

Performance check at Nagoya

 The performance of every MCP-PMT was checked in automated test benches in a systematic way.

Performance check in 1.5 T

- The performance of every MCP-PMT was checked in a large dipole magnet at KEK.
 - Checked the difference between 0 and 1.5 T.

TTS(1.5 T) - TTS(0 T)

gain(1.5 T) / gain(0 T) CE(1.5 T) / CE(0 T)

PMT module assembly / installation

- 4 MCP-PMTs are assembled in a module.
 - PMT window is glued on a wavelength filter, which cuts $\lambda \leq 340$ nm to suppress chromatic dispersion.
- Bubble free optical contact between the PMT module and the prism by a soft cast silicone cookie.
- 2.7 GSampling/s of PMT signal by switched-capacitor array ASIC (IRSX). [arXiv:1804.10782]
- Laser single photons for the in-situ calibration.

10

Threshold efficiency

- The gain of every MCP-PMT was adjusted to 5×10^5 .
 - Lower gain → longer lifetime but lower threshold efficiency
- Evaluated the efficiency with single photons from the laser.

Beam operation

- MCP-PMT HVs were turned on during luminosity runs in Apr-Jul 2018.
- TOP counter worked for particle identification.

First collision event on April 26

Example of Cherenkov "ring" image

Beam background

- PMT hits are dominated by γ rays from the accelerator
 - γ → Compton scattering / pair creation in the quartz bar → electrons → Cherenkov photons
 - MC estimation: 5-8 MHz/PMT at the design luminosity
- ~0.5 MHz/PMT in the start-up luminosity runs in 2018
 - Much higher than predicted, but still tolerable.

Kept below 0.023 C/cm² cf. QE drops by 20% at 0.3-1.7 C/cm² for the conventional MCP-PMTs

Evaluation of number of hits

- Number of hits of Cherenkov photons for di-muon events
- MC based on the measured parameters of each component
 - Quartz internal reflectance and transmittance
 - MCP-PMT QE and collection efficiency (dark noise negligible)
 - Readout efficiency (~77%, to be improved) and noise hits (a few %)
 - Beam background hits (~1 hits/slot)

Summary

- The MCP-PMT is one of the key components which bring the Belle II TOP counter into life.
- Succeeded in developing and producing 512 (and spare) MCP-PMTs for the Belle II TOP counter.
 - ~34 ps TTS for every PMT
 - 29.3% avg. QE at ~360 nm
 - Work in 1.5 T
- Installation of the TOP counter finished in May 2016.
- The MCP-PMTs worked as expected in the first beam operation in Apr-Jul 2018.

QE measurement setup

 Measure the photocathode current with a picoammeter:

Laser measurement setup

Single photon irradiation to each channel one by one.

Installation of the TOP counter

Viewed from the backward to the forward