

SiPM readout for cryogenic applications

5th International Workshop on New Photon-Detectors November 27th – 29th 2018, University of Tokyo Alessandro Razeto -- Laboratori Nazionali del Gran Sasso

Cryogenic applications

- Several particle detectors use liquified noble gasses as target
 - LXe = 165 K -- LAr = 87 K -- LNe = 27 K
 - Liquified noble gasses shows
 - Very high light yield O(10 pe/keV)
 - Very high electron livetime O(10 ms)
- Beam experiments:
 - Neutrino Long and Short baseline experiments at FNAL: DUNE/ICARUS
 - MEG/MEG-II
- Low Background experiments:
 - Dark Matter detectors: DarkSide-20k, Xenon-nT
 - Double beta detectors: NEXO

Cryogenic read-out

- SiPMs are working down to the freeze-out at ~ 25 K
 - Their compact size and no HV simplify the design of new detectors
 - High PDE and high granularity offers uncharted possibilies for segmented detectors (CALOCUBE)
 - On the other hand for large detectors the small size of SiPMs compared to PMTs is a problem
- The cryogenic read-out poses a number of problems
 - Optimize connection schemes
 - Development of cryo-electronics
 - Number of signal extractions
 - Dissipated power
 - Radiopurity of components and circuits

Dark noise reduction by more than 7
 orders of magnitude

At a given temperature and overvoltage higher Rq -> longer recharge time -> lower triggering probability in

- the same cell
- -> lower afterpulse probability
- -> lower divergence probability

Bias [V]

 Dark noise reduction by more than 7 orders of magnitude

- Increased afterpulse
 - Lower gain operation

- R_q strongly depends on T
- Pulse shape changes
 - Ionger recharge time

 Dark noise reduction by more than 7 orders of magnitude

- Increased afterpulse
 - Lower gain operation

- R_q strongly depends on T
- Pulse shape changes
 - longer recharge time
- <u>Smaller peak current</u>

F. Acerbi et al., IEEE TED 64,2,17

FBK: Low AP SiPMs

Extended Gain SiPM for Cryogenic Application from FBK

FBK: Low AP SiPMs

- The increased stability at cryogenic temperarure can be beneficial to:
 - Increse the gain or
 - Decrease the recharge time or
 - Decrease the DCR
- FBK produced several SiPM variants for DarkSide
 - Extensive tests are <u>ongoing</u> to best match:
 - The experiment specifications (PDE/DCR/AP/DiCT)
 - The coupling with the cryogenic FEB

DarkSide-20k Photo Detector Module specifications:

- Surface = 25 cm2
- PDE > 45 % @ 420 nm
- DCR = 0.08 cps/mm2
- TNC < 40%
- Noise Hits ~ DCR
 SNR > 8 BW ~ 30
- Timing ~ 10 ns
- Dynamic range > 50 pe
- Total power < 250 mW

MH₇

FBK: Low AP run split

Fast recharge time

Long recharge time

SiPM Electrical Model

SiPM signal shape

SPE recharge time

$$\tau_{i2} \simeq \frac{NR_qR_LC_d^2}{Rq(C_d + C_q) + NR_L(C_d||C_q)}$$

$$\tau_{d2} \simeq Rq(C_d + C_q) + NR_L(C_d||C_q)$$

$$\tau_q := Rq(C_d + C_q) \quad \& \quad \tau_L := NR_L(C_d || C_q)$$
$$F_C \quad := \quad C_d / C_q$$

 $\tau_{i2} \simeq F_C(\tau_q || \tau_L)$

$$\tau_{d2} \simeq \tau_q + \tau_L$$

SiPM signal shape

SPE recharge time

$$\tau_{i2} \simeq \frac{NR_qR_LC_d^2}{Rq(C_d + C_q) + NR_L(C_d||C_q)}$$

$$\tau_{d2} \simeq Rq(C_d + C_q) + NR_L(C_d||C_q)$$

SPE recharge time

$$au_q / au_L \simeq rac{F_C R_q}{N R_L} >>$$
 $au_{i2} \simeq F_C au_L$
 $au_{d2} \simeq au_q$

R_q ~ 1-10 MΩ R_L ~ 10-50 Ω N ~ 1 - 100 k F_C ~ 5-10

The knowledge of the signal shape is important to optimize connection scheme and amplifier design Long recharge times are preferred for charge amplifiers Short recharge times are preferred for trans-impedance amplifiers

SiPM Ganging: MEG-II

SiPM passive ganging

- allows to connect more SiPMs with the same readout channel
 - In parallel: increasing the capacitance or
 - In series: reducing the effective gain
- MEG-II uses a hybrid passive ganging mode
 - Signal in series
 - Bias in parallel
- Signal then extracted to room temperature
- This allows fast recovery time
 - Small number of channels

SiPM Ganging: MEG-II

SiPM Ganging: MEG-II

- Bias uniformity is provided by the resistor network
- Auto-balancing does not work at cryogenic temperature

- The dark rate is too low
 - Leackage current would dominate the divider

RI Cd

.

The static model defines the noise gain of the connected amplifier

Noise Model

Noise contributions

PD18

- Several effects contribute to the noise budget
 - The thermal noise of the resistors in the SiPM: $e_J = 0.1 0.6$ nV \sqrt{Hz}
 - The voltage noise of the amplifier: $e_n = 0.2 5 \text{ nV} \sqrt{\text{Hz}}$
 - The current noise of the amplifier: $i_n = 0.001 1 \text{ pA } \sqrt{\text{Hz}}$
- Considering a BW of 50 MHz the current noise is negligible
 - 10⁶ e- in 500 ns (τ) -> current of 300 nA
 - I pA * √50 MHz -> noise current of 7 nA
- The voltage noises are amplified by the noise gain

BW & output noise spectrum depends on the SiPM static model

4 regions can be identified

BW & output noise spectrum depends on the SiPM static model

4 regions can be identified

•
$$\mathbf{F} \ll \frac{1}{2\pi (NR_s + R_q)C_q}$$
 : intrinsic unamplified \mathbf{e}_n

BW & output noise spectrum depends on the SiPM static model

• 4 regions can be identified

•
$$F \ll \frac{1}{2\pi (NR_s + R_q)C_q}$$
: intrinsic unamplified e_n
• $F \ll \frac{1}{2\pi R_q C_q}$: $e_n + e_T$ amplified by $\frac{R_f}{R_q/N + R_s}$

Noise Gain

F

BW & output noise spectrum depends on the SiPM static model

4 regions can be identified

$$F \ll \frac{1}{2\pi (NR_s + R_q)C_q} : \text{intrinsic unamplified } e_n$$

$$F \ll \frac{1}{2\pi R_q C_q} : e_n + e_T \text{ amplified by } \frac{R_f}{R_q/N + R_s}$$

$$F \gg \frac{1}{2\pi R_q C_q} : e_n + e_T \text{ amplified by } \frac{R_f}{R_s} \text{ (if present)}$$

Rq transition

Amplifier selection

Heterojunction electronics

For fast TIA amplifiers e_n is more important than i_n FET technology typically

• $e_n \sim 4 \text{ nV}/\sqrt{\text{Hz}} \& i_n \sim 10 \text{ fA}/\sqrt{\text{Hz}}$

FET technology may not be the best choice

- Most producers are distributing heterojunction BJT based amplifiers
 - For high bandwidth applications
 - For very low noise applications

GHz

- sub-nV/√Hz
- HBTs are great signal amplifiers at cryogenic temperature
 - They are BJT -> very low e_n
 - Low 1/f noise
 - Noise and BW are better at cryogenic temperature

LMH6629 characterization

LMH6629 Noise Model

$$N_o = \frac{G}{2}\sqrt{4k_B T R_{eq}^J + e_n^2(T) + i_n^2(T)R_i^2}$$

Where:

- constant
- R_{eq} accounts for all resistors
- e_n is modeled as a Johnson source
- i_n is modeled as Shotky noise of $|i_b| + |i_o|$
- N is the output noise density (a) $_1MHz$

The fit reproduces the data at better than 2.5 %

The voltage noise density of the LMH6629 is equivalent to a 20 Ω resistor

M D'Incecco et al., IEEE TNS 65,4,18

DarkSide-20k Amplifier

TIA design & results on single SiPMs

Standard Transimpedance design except:

- Few tweaks for stabilization
 - R₊, R₋, C_i

- C_f is due to parasitic effects (~0.2 pF)
- The series resistor Rs

TIA design & results on single SiPMS

INFN

Noise Model for $F < \frac{1}{2\pi C_q R_q} \simeq 4 \text{ MHz}$

DarkSide-20k ganging scheme

From 1 cm² to 24 cm²

- To read 6 cm² with the same amplifier a hybrid ganging solution is used
 - Virtual ground summing does not change the shape of the signal
- This design increases the capacitance seen by the TIA only by 50%
- <u>For cryogenic use a precision voltage divider is</u> <u>required</u>
 - Otherwise the voltage division will be defined by the leakage current

Four 6 cm² channels are summed with an active adder

DUNE SP ganging scheme

ARAPUCA

DUNE SP Ganging

Design similar to DarkSide

Rf=100 Ohm

Signal

Rt=50 Ohm

DUNE SP Ganging

Rf=100 Ohm

Signal

Design similar to DarkSide

Conclusions

- Interest on cryogenic readout is increasing
- We proved that large SiPM arrays O(25 cm²) can be read with outstanding SNR and timing performances
 - SNR > 20 & timing down to few ns
 - Shortly we will test fast FBK SiPMs tiles which should increase further the SNR
- The cryogenic electronics built on commercial components ready available
 - Using radiopure components
- Groups are starting to develop cryogenic capable integrated solutions
 - INFN-Torino for DarkSide
 - NEXO 3D development

AP Bursts?

Very recently we discovered some shorts O(10 s) bursts with up to many thousands PE

Matched filter is the optimal linear filter to extract a signal of know shape in the presence of additive stochastic noise.

- The filtered signal is obtained by cross-correlating the raw waveform for the signal template
- The output is symmetric around the peak, giving a better identification of the timing.

We successfully tested an online FPGA based implementation

Matched filtering 18

6 cm² SiPM readout

$$S_I^{\max} = \frac{G}{2\tau} \propto \frac{G}{2\left(2R_{eq} + R_s\right)}$$

$$n_I = \frac{\sqrt{4K_B T ((2R_{eq} + R_s)/3 + R_n)}}{(2R_{eq} + R_s)/3}$$

$$S/N \propto \frac{G}{2 \times 3\sqrt{4K_B T ((2R_{eq} + R_s)/3 + R_n)}}$$

.

PD18

6 cm² SiPM readout

