

International Workshop on Next Generation Nucleon Decay and Neutrino Detectors Kavli Institute for Physics and Mathematics of the Universe, The University of Tokyo November 11-13, 2018

Outline

- Neutrino Oscillations
- The T2K Experimental Design
- Constraining the T2K Unoscillated Event Rate in Super-Kamiokande (SK)
- The recent $v_{\mu} \rightarrow v_{\mu}$ Measurement
- The recent $v_{\mu} \rightarrow v_{e}$ Measurement
- Future Sensitivities

Questions in Neutrino Physics

- This has been an exciting year in ${\bf v}$ physics
- Non-zero $\theta_{_{13}}$ opens a lot of doors both theoretically and **experimentally**
 - Indications of non-zero $\theta_{_{13}}$ was shown by T2K (2.5 $\sigma)\,$ and MINOS (89% CL)
 - Sin²($2\overline{\theta}_{13}$) measured by reactor \overline{v}_{e} disappearance experiments
 - Discovery of $v_{\mu} \rightarrow v_{e}$ oscillations by T2K ($\sin^{2}(2\theta_{13}) \neq 0$ at 7.4 σ)
- There are still many questions that need answers
 - What is the Mass Hierarchy (MH)
 - What is δ_{cp} ? is $\delta_{cp} \neq 0$?
 - Is θ_{23} maximal?, If not is it above or below 45° (what is the θ_{23} octant)?
 - Combined analyses (T2K + reactor) allow for measurements of sin²(θ_{23}) and sin(δ_{cp})
- Recent T2K results can provide insight into these questions and provide high precision confirmation of previous results
- With full statistics T2K has the capability of measuring an indication of CP violation $(\delta_{cp} \neq 0)$, and determining the θ_{23} octant
- Combined fits with NOvA may help determine the MH and increase sensitivity to CP violations and the $\theta_{_{23}}$ octant

Neutrino Oscillation Formalism

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta_{cp}} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta_{cp}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$

For the T2K baseline (295km) and peak energy (0.6 GeV) the v_{e} - appearance oscillation probability, as a function of δ_{co} is (NH):

$P(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e}) \approx 0.051 - 0.014 \sin \delta_{cp} - 0.00002 \cos \delta_{cp}$

- T2K expects ~5% of the v_{μ} to oscillate to v_{ρ} at the peak energy
- There is a 27% max asymmetry between $P(v_{\mu} \rightarrow v_{e})$ and $P(\overline{v_{\mu}} \rightarrow \overline{v_{e}})$
 - Assuming δ_{cp} = 90° and θ_{23} = 45°
 - The max asymmetry increases to 39% for $\theta_{23} = 39^{\circ}$

The T2K Collaboration

Large international collaboration with:

~500 members from

59 institutions in

11 different countries

Canada TRIUMF U. Alberta U. B. Columbia U. Regina U. Toronto U. Victoria U. Victoria U. Winnipeg York U.

France CEA Saclay

IPN Lyon LLR E. Poly. LPNHE Paris

Spain

IFAE, Barcelona IFIC, Valencia United Kingdom Imperial C. London Lancaster U. Oxford U. Queen Mary U. L. STFC/Daresbury STFC/RAL U. Liverpool U. Sheffield U. Warwick Poland IFJ PAN, Cracow NCBJ, Warsaw

U. Silesia, Katowice

U. Warsaw

Warsaw U. T.

Wroklaw U.

INR <mark>Germany</mark> Aachen U.

Japan

ICRR Kamioka ICRR RCCN Kavli IPMU KEK Kobe U. Kyoto U.

Miyagi U. Edu. Osaka City U. Okayama U. Tokyo Metropolitan U. U. Tokyo

USA

Boston U.U. C. IrvineColorado S. U.U. ColoradoDuke U.U. PittsburghLouisiana S. U.U. RochesterStony Brook U.U. Washington

Italy

INFN, U. Bari INFN, U. Napoli INFN, U. Padova INFN, U. Roma

Switzerland

ETH Zurich U. Bern U. Geneva

The T2K Experiment

- Study v oscillations
- Generate high purity v_{μ} beam
- Constrain unoscillated flux and cross sections
 - Beam monitoring
 - INGRID (on-axis)
 - ND280 (off-axis)

- Measure oscillated event rates 295 km downstream at Super-Kamiokande (SK)
 - v_{μ} disappearance

$$P(v_{\mu} \rightarrow v_{\mu}) \propto \sin^2(2\theta_{23}), \Delta m_{32}^2$$

– v_{e} - appearance

 $P(v_{\mu} \rightarrow v_{e}) \propto \sin^{2}(2\theta_{13}), \sin^{2}(\theta_{23}), \sin(\delta_{cp})$

T2K v Beamline

Off-Axis Flux Optimization

- Off-axis beam provides:
 - Peak energy at $sin^2(\Delta m^2 L/E)$ maximum
 - Narrow band spectrum
 - Reduced NC background
 - Dominant interaction at SK: CC quasi-elastic
- Optimal angle: 2.5°
- On-axis ND: INGRID
- Off-Axis ND: ND280
- Off-Axis FD: Super-Kamiokande (SK)

Flux Predictions and Uncertainties

- Interaction of 30 GeV protons with graphite target
 - Modeled with FLUKA2008
 - Tuned with NA61/SHINE data
- Propagation, focusing and decay of resulting π and K
 - GEANT3
 - GCALOR (neutrons)

- Flux prediction tuned with experimental data from:
 - Proton flux measurements
 - Horn current monitoring
 - Beamline alignment studies
 - Beam direction (INGRID & μ monitor data)
 - Hadron production uncertainties propagated from NA61/SHINE
- Experimental errors from above propagated to flux uncertainties

INGRID and ND280

- T2K off-axis Near Detector (ND280)
 - Measure cross sections on water
 - Multiple sub detectors
 - Magnetic field (0.2 T)
 - Charge discrimination
 - Momentum determination
 - Low energy cross section measurements
 - Data used to constrain T2K event rate at SK

- INGRID (on-axis)
 - Monitor on-axis beam
 - Stability of direction and event rate

SMRD

P0D ECAL Downstream

Barrel ECAL

ECAL

Solenoid Coil

Fine-Gra Detector

UA1 Magnet Yoke

P0D (π⁰-

detector)

Cross Section Models

- NEUT MC generator used simulate interactions
- T2K energy region dominated by (quasi)elastic interactions
- Resonant π production contributes significantly above ~750 MeV
- Current questions:
 - <u>Meson Exchange Currents vs</u> M_A^{eff}
 - <u>R</u>elativistic <u>F</u>ermi <u>G</u>as model vs Spectral Functions
 - Resonant π kinematics
- Constraints on the cross sections provided by:
 - ND280 (flux + xsec fit)
 - External data (MiniBooNE)

Cross Section Data

- ND280 data are divided by **topology**
 - 0 π tracks (QE like, right)
 - 1 π track (resonance like)
 - Multiπtracks (DIS like)
- Each sample is binned in $p_{\mu} \theta_{\mu}$
- The MC is fit to the data
- Fit results are propagated to the T2K prediction at SK
- Cross section parameters are split into two groups:
 - Best-fit central values used to generated T2K prediction at SK
 - Nuisance parameters which are marginalized
- Flux parameters are fit simultaneously (within uncertainties shown on Slide 8)

Constrain the T2K Prediction at SK: Flux ⊗ Cross Section Fit

- Fit to the ND280 data greatly improves constraints on flux ⊗ cross section
- Results of fit to ND280 data:
 - Flux normalizations (top right, v_{μ})
 - Cross section params. propagated to T2K prediction for SK (bottom right)
- Other fit params (cross section and detector response) marginalized
- **Dominant residual error**: Lack of constraints on marginalized cross section parameters
- New ND280 data samples are being explored / incorporated to improve constraints for future analyses

Parameter	Prior to ND280 Constraint	After ND280 Constraint
M _A ^{QE} (GeV)	1.21 ± 0.45	1.223 ± 0.072
M _A ^{RES} (GeV)	1.41 ± 0.22	0.963 ± 0.063
CCQE Norm.*	1.00 ± 0.11	0.961 ± 0.076
CC1m Norm.**	1.15 ± 0.32	1.22 ± 0.16
NC1π ⁰ Norm.	0.96 ± 0.33	1.10 ± 0.25
*For E _v <1.5 GeV	**For E _v <2.5 GeV	

T2K Events in the SK Detector

Monte Carlo Simulations

- e⁻-ring
 - e scatter more than μ
 - 'Fuzzy' ring edges

 $-\pi^{0} \rightarrow \gamma + \gamma$, produce two e⁻ - like rings

14

- Must resolve both rings to reject

v_{μ} - Disappearance Event Selection

SK Selection Cuts

- $E_{vis} > 100 \text{ MeV}$
- Veto hits < 16
- Fully contained(Fid. Vol. = 200 cm)
- Single ring
- Muon-like
- $p_{\mu} > 200 \text{ MeV}$
- 0 or 1 Michel e

v_{μ} - Disappearance Fitting

- Scan over values of:
 - $-\Delta m^2_{32}$
 - $-\sin^2(2\theta_{23})$
- Scan 1st and 2nd octant separately
- Calculate likelihood of data originating from prediction

$$\chi^{2} = 2\sum_{E_{r}} \left(N_{SK}^{data} \ln \frac{N_{SK}^{data}}{N_{SK}^{exp}} + \left(N_{SK}^{exp} - N_{SK}^{data} \right) \right) + \left(\mathbf{f} - \mathbf{f}_{0} \right)^{T} \mathbf{C}^{-1} \left(\mathbf{f} - \mathbf{f}_{0} \right)^{T}$$

v_{μ} - Disappearance Results

• Best-fit oscillation parameter values:

 $\sin^2(\theta_{23}) = 0.514 \pm 0.082$

$$\left|\Delta m_{32}^{2}\right| = 2.44_{-0.15}^{+0.17} \times 10^{-3} eV^{2}/c^{2}$$

- Data prefers 2nd $\theta_{_{23}}$ octant
- 1σ confidence intervals are consistent with:
 - Maximal mixing $(sin^2(\theta_{23}))$
 - The MINOS result (Δm_{32}^2)

$$\chi^{2} = 2\sum_{E_{r}} \left(N_{SK}^{data} \ln \frac{N_{SK}^{data}}{N_{SK}^{exp}} + \left(N_{SK}^{exp} - N_{SK}^{data} \right) \right) + \left(\mathbf{f} - \mathbf{f_{0}} \right)^{T} \mathbf{C}^{-1} \left(\mathbf{f} - \mathbf{f_{0}} \right)$$

Statistical Constraints in $\mathbf{E_{y}}$ Bins Systematic Prior Constraints

	$sin^2 2\theta_{23}$	Δm_{32}^2	χ²/ndf	N _{obs}	N_{exp}	p-value	† Null
θ ₂₃ ≤ π/4	1.000	2.44e-3	56.04 / 71	50	57.97 [†]	0.83	Oscillation
θ ₂₃ ≥π/4	0.999	2.44e-3	56.03 / 71	58	57.92	0.82	204.7±16.7

v_{e} - Appearance Event Selection

SK Selection Cuts

- Veto hits < 16
- Fully contained(Fid. Vol. = 200 cm)
- E_{vis} > 100 MeV
- Single ring
- Electron-like
- $-100 < E_v < 1250 \text{ MeV}$
- 0 Michel e
- Cut to remove π⁰
 background

Event Selections Improvements

- Old π^0 cut: 2^{nd} ring finder + π^0 mass
- New π^{0} cut: Add fitter
 - Forces fits to π^0 and e^- hypotheses
 - Fits 12 parameters
 - Vertex (4)
 - Direction (2x2)
 - Momenta (2)
 - Conversion distances (2)

Measured Charge

Predicted Charge: Single Ring (e-like) fit

Predicted Charge: Two Ring (πº-like) fit

Event Selections Improvements

- Old π^0 cut: 2nd ring finder + π^0 mass
- New π^{0} cut: Add fitter
 - Forces fits to π^0 and e^- hypotheses
 - Fits 12 parameters
 - Vertex (4)
 - Direction (2x2) 0
 - Momenta (2) •
 - Conversion distances (2)
 - Calculate likelihood for each hypothesis
 - Also reconstruct π^0 mass
- 2D cut **removes 70% more** π⁰ background than previous method
- More sensitive to low energy photons \bullet
- Better discrimination in π^0 mass tail \bullet

 π^{0} Mass [MeV/c]

Induced

v_e-Appearance Event Rate Prediction and Uncertainties

2013 Event Rate Predictions

Parameters	Total	ν_e sig.	ν_e bkg.
Nominal SK MC	21.64	17.36	3.02
Before ND280 fit	22.57	17.94	3.24
After ND280 fit	20.44	16.42	2.93
ND280+Old π^0 cut	22.50	16.78	3.08
ND280+ New π^0 cut	21.90	17.35	3.30

Parameters	ν_{μ} bkg	. $\overline{\nu}_{\mu}$ bkg.	$\overline{\nu}_e$ bkg.
Nominal SK MC	1.05	0.06	0.15
Before ND280 fit	1.17	0.07	0.16
After ND280 fit	0.89	0.05	0.14
ND280 + Old π^0 cut	2.33	0.13	0.16
ND280 + New π^0 cu	t 1.03	0.06	0.17

Run 1-4 → 6.393x10²⁰ POT (partial run 4)

Systematic Uncertainties

		$\sin^2 2\theta_1$	$_{3} = 0.1$
Error source		w/o ND280 fit	w/ ND280 fit
Beam only	Eit to	11.6	7.5
M_A^{QE}		21.5	3.2
M_A^{RES}	ND280	3.3	0.9
CCQE norm. $(E_{\nu} < 1)$	$1.5 \mathrm{GeV})$	9.3	6.3
$CC1\pi$ norm. $(E_{\nu} < 2$	$.5 \mathrm{GeV})$	4.2	2.0
$NC1\pi^0$ norm.		0.6	0.4
CC other shape	I	0.1	0.1
Spectral Function	Othe	6.0	6.0
p_F	Cross	0.1	0.1
CC coh. norm.	Sectio	0.3	0.2
NC coh. norm.	Jecho	0.3	0.2
NC other norm.		0.5	0.5
$\sigma_{\nu_e}/\sigma_{\nu_{\mu}}$		2.9	2.9
W shape		0.2	0.2
pion-less Δ decay		3.7	3.5
SK detector eff.	CK	2.4	2.4
FSI	JK	2.3	2.3
PN		0.8	0.8
$\rm SK$ momentum scale		0.6	0.6
Total		28.1	8.8

v_e-Appearance Event Rate Prediction and Uncertainties

2013 Event Rate Predictions

Parameters	Total	ν_e sig.	ν_e bkg.
Nominal SK MC	21.64	17.36	3.02
Before ND280 fit	22.57	17.94	3.24
After ND280 fit	20.44	16.42	2.93
ND280+Old π^0 cut	22.50	16.78	3.08
ND280+ New π^0 cut	21.90	17.35	3.30

Parameters	ν_{μ} bkg.	$\overline{\nu}_{\mu}$ bkg.	$\overline{\nu}_e$ bkg.
Nominal SK MC	1.05	0.06	0.15
Before ND280 fit	1.17	0.07	0.16
After ND280 fit	0.89	0.05	0.14
ND280+ Old π^0 cut	2.33	0.13	0.16
ND280+ New π^0 cu	t 1.03	0.06	0.17

Run 1-4 → 6.393x10²⁰ POT (partial run 4)

Systematic Uncertainties

Predicted Number of T2K v_e- appearance Events in SK (Signal + Background)

$v_{\rm e}\textsc{-}$ Appearance Fitting and Results

- Fit to maximize the likelihood that:
 - $N_{obs} = P_{poisson}(N_{pred})$
 - An e⁻ has a particular $p_e^- \theta_e$
 - Systematic fluctuations are consistent with priors
- Scan over $sin^2(2\theta_{13})$ space
- Other osc. params. are fixed
 - $-\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2$
 - $-\sin^2(2\theta_{23}) = 1.0$
 - $\delta_{cp} = 0^{\circ}$
- Best fit, assuming above params.

NH:sin²(2 θ_{13}) = 0.150^{+0.039}_{-0.034} **IH**: sin²(2 θ_{13}) = 0.182^{+0.046}_{-0.040}

- 1σ C.L. errors
- Excludes $\sin^2(2\theta_{13}) = 0$ at 7.4 σ

$$\mathcal{L} = \mathcal{L}_{norm} \times \mathcal{L}_{shape} \times \mathcal{L}_{syst}$$

$$(3) = \mathcal{L}_{norm} \times \mathcal{L}_{shape} \times \mathcal{L}_{syst}$$

$$(4) = \mathcal{L}_{norm} \times \mathcal{L}_{shape} \times \mathcal{L}_{syst}$$

$$(5) = \mathcal{L}_{norm} \times \mathcal{L}_{shape} \times \mathcal{L}_{syst}$$

$$(6) = \mathcal{L}_{norm} \times \mathcal{L}_{shape} \times \mathcal{L}_{shape} \times \mathcal{L}_{shape} \times \mathcal{L}_{shape} \times \mathcal{L}_{shapp} \times \mathcal{L}_$$

v_{e} - Appearance Results

- Repeat fit for other oscillation parameter values
 - $-\pi < \delta_{_{CP}} < \pi$
 - $MH(\pm |\Delta m^{2}_{32}|)$
 - sin²(θ_{23}) (backup slide)
- Results consistent across runs

Future Sensitivities

- Reactor Experiments:
 - Measures \overline{v}_{e} disappearance
 - $P(\overline{v}_{e} \rightarrow \overline{v}_{e}) \propto sin^{2}(2\overline{\theta}_{13})$
 - Very high precision
- T2K:
 - Measures v_{e} appearance
 - − P(ν_{μ} → ν_{e}) ∝ sin²(2 θ_{13}), sin²(θ_{23}), sin(δ_{cp})
 - Differences due to $\theta_{_{23}}$ and $\delta_{_{CP}}$
- If the Daya Bay result is assumed in T2K fits then T2K is sensitive to:
 - CP violation
 - The $\theta_{_{23}}$ octant
 - MH (with NOvA)

- Study T2K sensitivity w.r.t.:
 - Exposure: up to 7.8x10²¹ POT
 - Run plan: v vs \overline{v} beam
 - Combined analysis: T2K + NOvA
 - Systematic uncertainty projections

T2K Spectra at SK for 7.8x10²¹ POT

- Calculated FD spectra for full T2K statistics
 - Project SK MC to higher exposure
 - Estimate \overline{v} beam MC from flux ratios
- Simultaneous fit of $\nu_{\mu}, \nu_{e}, \overline{\nu}_{\mu},$ and $\overline{\nu}_{e}$ samples
- Oscillation parameter uncertainties
 - Fix solar terms
 - Allow atmospheric terms to float within current uncertainties
 - Project θ₁₃ uncertainties to Daya Bay systematic uncertainty:
 (sin²(2θ₁₃) = 0.1±0.005)
 - MH and $\delta_{_{CP}}$ are unconstrained
- Assume various true values for: $\theta_{_{13}}, \, \theta_{_{23}}, \, \delta_{_{CP}}, \, \text{and MH}$

T2K 50% v / 50% v + Daya Bay

- No Systematics (solid) Ability to determine CP violation as a function of true δ_{cp}
- With systematics (**dashed**) ~10% for v_{e} and ~13% for v_{u}
 - v samples assumes 2012 level systematics
 - \overline{v} samples assume +10% additional uncertainty

GLoBES: Comput.Phys.Commun. 167 (2005) 195 Comput.Phys.Commun.177:432-438,2007

T2K + NOvA + Daya Bay

- Produce T2K spectra in GLoBES
- Reproduce NOvA event spectra in GLoBES (right)
- Reproduce NOvA results (below) using generated spectra
- Systematic Uncertainties:
 - Treat T2K and NOvA equally
 - Allow normalizations to float
 - Signal: 5%
 - Background: 10%

Combined Sensitivities and Optimal Run Plan

- CPV sensitivity
 - Greatly enhanced by combined fit
 - Flat for run ratios v > 30%/70% v/v
- Mass Hierarchy
 - Almost no sensitivity alone
 - Large enhancement to NOvA degenerate region
 - Prefers more v running in combined fit
- Evaluated other metrics
- Metrics mostly flat for: 70%/30% < v/v < 30%/70%

50%/50% v/v running

Variable vIv running ³⁰

Conclusions

- The T2K experiments doubled its statistics in the past year and results are improving
- Analysis techniques continue to improve
 - Improved data based constraints on the flux
 - Better constraints from ND280
 - Improved $\pi^{\scriptscriptstyle 0}$ rejection at Super-Kamiokande
- Measured $v_{\mu} \rightarrow v_{e}$ oscillations rejecting $\theta_{13} = 0$ at 7.4 σ
- Updated $v_{\mu} \rightarrow v_{e}$ result expected soon
- Continue to improve constraints in $\Delta m^2_{_{32}}$ and $heta_{_{23}}$
- Future will bring improved measurements and sensitivity to CP violation, the $\theta_{_{23}}$ octant, and the mass hierarchy
 - Beam upgrades will accelerate POT accumulation
 - Antineutrino running pilot run proposed for 2014
 - Combined fits with NOvA and Daya Bay will open doors to new physics

Backup Slides

Neutrino Oscillation Formalism

$$(v_e \quad v_\mu \quad v_\tau) = U_{PMNS} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

$$U_{PMNS} = \begin{pmatrix} C_{12} & S_{12} & 0 \\ -S_{12} & C_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} C_{13} & 0 & S_{13}e^{-i\delta_{cp}} \\ 0 & 1 & 0 \\ -S_{13}e^{-i\delta_{cp}} & 0 & C_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -S_{23} & C_{23} \end{pmatrix}$$

$$P(v_\mu \Rightarrow v_e) = 4c_{13}^2 s_{13}^2 s_{23}^2 \sin^2 \Phi_{31} \left(1 + \frac{2a}{\Delta m_{31}^2} (1 - 2s_{13}^2) \right)$$

$$+ 8c_{13}^2 s_{12} s_{13} s_{23} (c_{12} c_{23} \cos(\delta_{cp}) - s_{12} s_{13} s_{23}) \cos \Phi_{32} \sin \Phi_{31} \sin \Phi_{21}$$

$$- 8c_{13}^2 c_{12}^2 c_{23}^2 + s_{12}^2 s_{23}^2 s_{13}^2 - 2c_{12} c_{23} s_{12} s_{13} s_{23} \cos(\delta_{cp}) \right) \sin^2 \Phi_{21}$$

$$- 8c_{13}^2 s_{13}^2 s_{23}^2 (1 - 2s_{13}^2) \frac{dL}{4E} \cos \Phi_{32} \sin \Phi_{31} = 33$$

Pre-fit ND280 / SK Flux Correlations

34

Pre-fit ND280 / SK Flux Correlations

Flux Constraints – All v Samples

36

CC 1 π and CC multi π samples

37

ND280 Pre-fit and Post-fit Matrices

Fixed Oscillation Parameters in Oscillations Fits to SK Data

Parameter	Value	Fit Parameter in Disappearance Fits
Δm_{21}^2	$7.6 imes 10^{-5} \mathrm{eV^2}$	
Δm^2_{32}	$2.4 \times 10^{-3} \mathrm{eV}^2$	
$\sin^2 2\theta_{12}$	0.8704	
$\sin^2 2\theta_{23}$	1.0	
$\sin^2 2\theta_{13}$	0.1 (or 0)	
$\delta_{ m CP}$	0	
Mass hierarchy	Normal	
ν travel length	295 km	Fit Dasamatas in
Earth density	$2.6 \mathrm{g/cm^3}$	Appearance Fits

$v_{\mu}\text{-}$ Disappearance Event Rate

RUN1+2+3	Data			Expected		
$(\sin^2 2\theta_{23}, \Delta m_{32}^2) = (1.0, 2.4 \times 10^{-3} \text{ eV}^2)$		MC	$\nu_{\mu} + \overline{\nu}_{\mu}$	$\nu_{\mu} + \overline{\nu}_{\mu}$	$\nu_e + \overline{\nu}_e$	NC
		total	CCQE	CC non- QE	\mathbf{CC}	
TrueFV	-	299.35	49.67	109.50	8.62	131.56
FCFV	174	168.86	37.60	82.80	8.24	40.23
Single-ring	88	85.65	35.27	33.67	5.28	11.43
Muon-like PID	66	69.67	34.58	31.61	0.04	3.43
$p_{\mu} > 200 \mathrm{MeV}/c$	65	69.25	34.34	31.54	0.04	3.33
$N_{\rm decay-e} \le 1$	58	59.86	33.90	22.73	0.04	3.19
Efficiency from Interaction [%]	-	20.0	68.2	20.8	0.4	2.4
Efficiency from FCFV [%]	-	35.4	90.2	27.5	0.4	7.9

Source of uncertainty	$1 \mathbf{R} \mu \delta N_{SK} / N_{SK}$	1Re $\delta N_{SK}/N_{SK}$
SuperK detector	10.05%	3.20%
BANFF (prefit)	21.66%	24.57%
BANFF (postfit)	4.13%	4.71%
Uncorrelated XSec	6.34%	4.18%
FSI+SI	3.49%	2.30%
Total (BANFF prefit)	25.33%	25.14%
Total (BANFF postfit)	13.32%	7.52%

$$E_{\nu}^{\rm rec} = \frac{(M_n - V_{nuc}) \cdot E_l - m_l^2 / 2 + M_n \cdot V_{nuc} - V_{nuc}^2 / 2 + \left(M_p^2 - M_n^2\right) / 2}{M_n - V_{nuc} - E_l + P_l \cos \theta_{\rm beam}},$$

v_{μ} - Disappearance Comparison

	$sin^2 2\theta_{23}$	Δm_{32}^2	χ² / ndf	N_{obs}	N_{exp}	p-value	† Null
θ ₂₃ ≤ π/4	1.000	2.44e-3	56.04 / 71	50	57.97 [†]	0.83	Oscillation
θ ₂₃ ≥π/4	0.999	2.44e-3	56.03 / 71	58	57.92	0.82	204.7±16.7

 v_{a} - Appearance $sin^{2}(\theta_{23}) - vs - sin^{2}(2\theta_{13})$

- Dotted lines indicate 2012 1 σ range on sin²(θ_{23})
- Large effect on the best-fit central value
- Error bands increase for lower values of $sin^2(\theta_{23})$

v_e- Appearance Runs 1-3 vs Run 4

v_e- Appearance Event Rate Prediction and Uncertainties

2013 Event Rate Predictions

Systematic Uncertainties

$\sin^2 2\theta_{13} = 0.1$			
	Nominal	Pre ND280 fit	Post ND280 fit
$\nu_e \text{ CC signal}$	17.4	17.9	16.0
ν_{μ} background	1.1	1.2	0.9
$\overline{\nu}_{\mu}$ background	0.1	0.1	0.1
ν_e background	3.0	3.3	2.9
$\overline{\nu}_e$ background	0.2	0.2	0.1
Total	21.6	22.6	20.4
$\sin^2 2\theta_{13} = 0.0$			
	Nominal	Pre ND280 fit	Post ND280 fit
$\nu_e \text{ CC signal}$	0.4	0.4	0.4
ν_{μ} background	1.1	1.2	0.9
$\overline{\nu}_{\mu}$ background	0.1	0.1	0.1
ν_e background	3.3	3.5	3.2
$\overline{\nu}_e$ background	0.2	0.2	0.2
Total	4.9	5.3	4.6

Run 1-4 → 6.393x10²⁰ POT

Emon course	$\sin^2 2\theta_{13} = 0.1$	
Error source	Pre ND280 fit	Post ND280 fit
Flux Fit to	11.6	7.6
M_A^{QE} (GeV)	21.2	3.2
M_A^{RES} (GeV) ND280	3.4	1.0
CCQE norm $(E_{\nu} < 1.5 \text{GeV})$	9.1	6.3
$CC1\pi$ norm $(E_{\nu} < 2.5 \text{GeV})$	4.0	2.1
$NC1\pi^0$ norm	0.6	0.4
CC other shape (GeV)	0.1	0.1
Spectral function Othe	C 6.1	6.1
$p_F (MeV)$ Cros	S 0.1	0.1
CC coherent norm Section	on ^{0.2}	0.2
NC coherent norm	0.2	0.2
$NC1\pi^{\pm}+NC$ other norm	0.5	0.5
$\sigma_{\nu_e \mathrm{CC}} / \sigma_{\nu_\mu \mathrm{CC}}$	2.9	2.9
W shape (MeV)	0.2	0.2
Pionless delta decay	3.6	3.6
SK detector efficiency SK	2.4	2.4
FSI+SI	2.3	2.3
Photo-nuclear	0.8	0.8
SK energy scale	0.5	0.5
Total	27.9	8.9

v_e-Appearance Event Rate Prediction and Uncertainties

2013 Event Rate Predictions

Systematic Uncertainties

\sin^2	$2\theta_{13}$	=	0.1	
----------	----------------	---	-----	--

	Nominal	Pre ND280 fit	Post ND280 fit
$\nu_e \text{ CC signal}$	17.4	17.9	16.0
ν_{μ} background	1.1	1.2	0.9
$\overline{\nu}_{\mu}$ background	0.1	0.1	0.1
ν_e background	3.0	3.3	2.9
$\overline{\nu}_e$ background	0.2	0.2	0.1
Total	21.6	22.6	20.4
$\sin^2 2\theta_{13} = 0.0$			
	Nominal	Pre ND280 fit	Post ND280 fit
$\nu_e \text{ CC signal}$	0.4	0.4	0.4
ν_{μ} background	1.1	1.2	0.9
$\overline{\nu}_{\mu}$ background	0.1	0.1	0.1
ν_e background	3.3	3.5	3.2
$\overline{\nu}_e$ background	0.2	0.2	0.2
Total	4.9	5.3	4.6

Run 1-4 → 6.393x10²⁰ POT

$$E^{rec} = \frac{m_p^2 - (m_n - E_b)^2 - m_e^2 + 2(m_n - E_b)E_e}{2(m_n - E_b - E_e + p_e \cos \theta_e)},$$

- Other Backup for nue?:
 - contribution of rate and shape terms?
 - P-value calculation
 - Erec analyis

Event Rate Expectations for T2K and NOvA

T2K + NovA + Daya Bay: Allowed Regions in δ_{cp} -vs- sin²(θ_{23})

T2K + NovA + Daya Bay: 90% C.L. Regions in δ_{cp} -vs- sin²(θ_{23})

Combined Sensitivities and Optimal Run Plan

- CPV sensitivity
 - Greatly enhanced by combined fit
 - Flat for run ratios v > 30%/70% v/v
- Mass Hierarchy
 - Almost no sensitivity alone

CPV Determination

MH Determinatior

- Large enhancement to NOvA degenerate region
- Prefers more v running in combined fit
- Evaluated other metrics
- Metrics mostly flat for: 70%/30% < v/v < 30%/70%

50%/50% v*l*v running

Variable vIv running 50