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Outline

● Neutrino Oscillations
● The T2K Experimental Design
● Constraining the T2K Unoscillated Event Rate 

in Super-Kamiokande (SK)

● The recent   →  Measurement

● The recent   → 
e
 Measurement

● Future Sensitivities
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Questions in Neutrino Physics
● This has been an exciting year in  physics

● Non-zero 
13

 opens a lot of doors both theoretically and experimentally

– Indications of non-zero 
13

 was shown by T2K (2.5)  and MINOS (89% CL)

– Sin2(213) measured by reactor e- disappearance experiments

– Discovery of   → 
e
 oscillations by T2K ( sin2(2

13
) ≠ 0 at 7.4

● There are still many questions that need answers
– What is the Mass Hierarchy (MH)

– What is 
cp

? is 
cp

 ≠ 0?

– Is 
23

 maximal?, If not is it above or below 45° (what is the 
23

 octant)?

– Combined analyses (T2K + reactor) allow for measurements of sin2(
23

) and sin(
cp

)

● Recent T2K results can provide insight into these questions and provide high 
precision confirmation of previous results

● With full statistics T2K has the capability of measuring an indication of CP violation 
(

cp
 ≠ 0), and determining the 

23
 octant

● Combined fits with NOA may help determine the MH and increase sensitivity to CP 
violations and the 

23
 octant
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Neutrino Oscillation Formalism

(
νe

νμ

ν τ
) = (

c 12 s 12 0
−s 12 c 12 0

0 0 1) (
c 13 0 s 13e

−i δcp

0 1 0
−s 13e

i δcp 0 c 13
) (

1 0 0
0 c 23 s 23

0 −s 23 c 23
) (

ν1

ν2

ν3
)

P (νμ→ νe ) ≈ 0.051 − 0.014 sinδcp − 0.00002 cosδcp

For the T2K baseline (295km) and peak energy (0.6 GeV) the


e
- appearance oscillation probability, as a function of 

cp
 is (NH):

● T2K expects ~5% of the  to oscillate to 
e
 at the peak energy

● There is a 27% max asymmetry between P(  → 
e
) and P(  → 

e
)

− Assuming 
cp

 = - 90° and 
23

 = 45°
− The max asymmetry increases to 39% for 

23
 = 39°  
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The T2K Experiment

● Measure oscillated event rates 295 km 
downstream at Super-Kamiokande (SK)

– - disappearance                                                  

         P(→ ) ∝ sin2(2
23

), m2
32

– 
e
- appearance                                                       

         P(→ 
e
) ∝ sin2(2

13
), sin2(

23
), sin(

cp
) 

● Study  oscillations

● Generate high purity  beam

● Constrain unoscillated flux and cross sections
– Beam monitoring
– INGRID (on-axis)
– ND280 (off-axis)

INGRID

Super-K

J-PARC

ND280
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T2K  Beamline
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Off-Axis Flux Optimization

● Off-axis beam provides:
– Peak energy at sin2(m2 L/E) maximum 

– Narrow band spectrum
– Reduced NC background
– Dominant interaction at SK: CC quasi-elastic 

● Optimal angle: 2.5°
● On-axis ND:  INGRID
● Off-Axis ND: ND280
● Off-Axis FD: Super-Kamiokande (SK)
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● Interaction of 30 GeV protons with 
graphite target 
– Modeled with FLUKA2008
– Tuned with NA61/SHINE data

● Propagation, focusing and decay of 
resulting  and K 

– GEANT3
– GCALOR (neutrons)

● Flux prediction tuned with 
experimental data from:
– Proton flux measurements
– Horn current monitoring
– Beamline alignment studies

– Beam direction (INGRID &  monitor data)

– Hadron production uncertainties 
propagated from NA61/SHINE

● Experimental errors from above 
propagated to flux uncertainties

Flux Predictions and Uncertainties
● Interaction of 30 GeV protons with 

graphite target 
– Modeled with FLUKA2008
– Tuned with NA61/SHINE data

● Propagation, focusing and decay of 
resulting  and K 

– GEANT3
– GCALOR (neutrons)

● Flux prediction tuned with experimental 
data from:
– Proton flux measurements
– Horn current monitoring
– Beamline alignment studies

– Beam direction (INGRID &  monitor data)

– Hadron production uncertainties 
propagated from NA61/SHINE

● Experimental errors  from above 
propagated to flux uncertainties (right)

Phys. Rev. D 87, 012001 (2013)
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SMRD

INGRID and ND280

● INGRID (on-axis)
– Monitor on-axis beam
– Stability of direction and event rate

Beam Direction [mrad] ]

● T2K off-axis Near Detector (ND280)
– Measure cross sections on water
– Multiple sub detectors
– Magnetic field (0.2 T)

● Charge discrimination
● Momentum determination

– Low energy cross section measurements
– Data used to constrain T2K event rate at SK

Run 1 Run 2 Run 3 Run 4
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Cross Section Models

Energy Range for


e
- Appearance

In T2K

● NEUT MC generator used 
simulate interactions

● T2K energy region dominated 
by (quasi)elastic interactions

● Resonant  production 
contributes significantly above 
~750 MeV

● Current questions:

– Meson Exchange Currents vs M
A

eff
 

– Relativistic Fermi Gas model vs 
Spectral Functions

– Resonant  kinematics

● Constraints on the cross 
sections provided by:
– ND280 (flux + xsec fit)
– External data (MiniBooNE) Qausi-elastic Resonance
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Cross Section Data
● Data from ND280 is used to constrain        

the flux   cross section prediction            
for T2K in SK

● ND280 data are divided by topology
– 0  tracks (QE - like, right)

– 1  track (resonance - like)

– Multi  tracks (DIS - like)

● Each sample is binned in p- 

● The MC is fit  to the data
● Fit results are propagated to the 

T2K prediction at SK
● Cross section parameters are split into two 

groups:
– Best-fit central values used to generated T2K 

prediction at SK
– Nuisance parameters which are marginalized

● Flux parameters are fit simultaneously 
(within uncertainties shown on Slide 8)
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Constrain the T2K Prediction at SK:
Flux  Cross Section Fit

● Fit to the ND280 data greatly 
improves constraints on flux  cross 
section

● Results of fit to ND280 data:

– Flux normalizations (top right, )

– Cross section params. propagated to 
T2K prediction for SK (bottom right)

● Other fit params (cross section and 
detector response) marginalized

● Dominant residual error :       
Lack of constraints on marginalized  
cross section parameters

● New ND280 data samples are being 
explored / incorporated to improve 
constraints for future analyses
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● 50 kt Water Cherenkov Detector
● 22.5 kt Fiducial Volume

● - ring

– Relatively straight trajectory
– Clear ring edges

● e- - ring
– More scattering along
– Fuzzy ring edges

● 0 induced backgrounds

– 0   →  + , produce two e- - like rings

– Must resolve both rings to reject

Monte Carlo Simulations

T2K Events in the SK Detector

● 50 kt Water Cherenkov Detector
● 22.5 kt Fiducial Volume

● - ring

– Relatively straight trajectory
– Clear ring edges

● e- - ring
– e- scatter more than -

– 'Fuzzy' ring edges

● 0 induced backgrounds

– 0   →  + , producing to e- - like rings

– Must resolve both rings to reject
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- Disappearance Event Selection

SK Selection Cuts
  

– E
vis

 > 100 MeV

– Veto hits < 16
– Fully contained

(Fid. Vol. = 200 cm)
  

– Single ring
– Muon-like

– p  > 200 MeV

– 0 or 1 Michel e-
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- Disappearance Fitting

● Scan over values of:

– m2
32

– sin2(2
23

)

● Scan 1st and 2nd 
octant separately

● Calculate likelihood 
of data originating 
from prediction

Systematic Prior 
ConstraintsStatistical Constraints in E  Bins
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- Disappearance Results

● Best-fit oscillation 
parameter values:

● Data prefers 2nd 
23

 octant

● 1 confidence intervals are 
consistent with: 

– Maximal mixing (
 
sin2(

23
)

 
)

–  The MINOS result (
 
m2

32 
)

Systematic Prior 
ConstraintsStatistical Constraints in E  Bins

∣Δm3 2
2 ∣= 2.44−0.15

+0.17
×10−3eV 2

/c 2

sin2
(θ23) = 0.514±0.082
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- Disappearance Comparison

† Null  
   Oscillation
   Expectation 
   204.7±16.7

†

†
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
e
- Appearance Event Selection

SK Selection Cuts
  

– Veto hits < 16
– Fully contained

(Fid. Vol. = 200 cm)

– E
vis

 > 100 MeV
  

– Single ring
– Electron-like

– 100 < E < 1250 MeV

– 0 Michel e-

– Cut to remove 0 
background
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● Old 0 cut: 2nd ring finder +  0 mass

● New 0 cut:  Add fitter

– Forces fits to 0 and e- hypotheses

– Fits 12 parameters
● Vertex (4)
● Direction (2x2)
● Momenta (2)
● Conversion distances (2)

– Calculate likelihood for each hypothesis

– Also reconstruct 0 mass

● 2D cut removes 70% more 0 
background than previous method

● More sensitive to low energy photons

● Better discrimination in 0 mass tail

Event Selections Improvements

Measured 
Charge

Predicted 
Charge:

Single Ring 
(e-l ike) fit

Predicted 
Charge:

Two Ring 
(0- l ike) fit

Vertex
Photon

Conversions

π0
γ

γ
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Event Selections Improvements

Cut

Cut

B
kg

d
 In

d
u

ce
d

 
0

S
ig

n
al

 C
C

 Q
E

 
e

0 Mass [MeV/c]

0 Mass [MeV/c]

Li
ke

lih
oo

d 
R

at
io

 (
L /

L e)
Li

ke
lih

oo
d 

R
at

io
 (

L /
L e)● Old 0 cut: 2nd ring finder +  0 mass

● New 0 cut:  Add fitter

– Forces fits to 0 and e- hypotheses

– Fits 12 parameters
● Vertex (4)
● Direction (2x2)
● Momenta (2)
● Conversion distances (2)

– Calculate likelihood for each hypothesis

– Also reconstruct 0 mass

● 2D cut removes 70% more 0 
background than previous method

● More sensitive to low energy photons

● Better discrimination in 0 mass tail
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
e
- Appearance Event Rate 

Prediction and Uncertainties
Systematic Uncertainties

SK

Other
Cross

Section

2013 Event Rate 
Predictions

Run 1-4  6.393x10→ 20 POT
(partial run 4)

Fit to 
ND280

+ Old 0 cut 
+ New 0 cut 

+ Old 0 cut 
+ New 0 cut 
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
e
- Appearance Event Rate 

Prediction and Uncertainties
Systematic Uncertainties

Predicted Number of T2K 


e
-  appearance Events in SK 

(Signal + Background)

2013 Event Rate 
Predictions

+ Old 0 cut 
+ New 0 cut 

+ Old 0 cut 
+ New 0 cut 

Run 1-4  6.393x10→ 20 POT
(partial run 4)
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
e
- Appearance Fitting and Results

● Fit to maximize the likelihood that:

– N
obs

= P
poisson

(N
pred

)

– An e - has a particular p
e
-  

e

– Systematic fluctuations are 
consistent with priors

● Scan over sin2(2
13

) space

● Other osc. params. are fixed

– m2
32

 = 2.4x10-3 eV2

– sin2(2
23

) = 1.0

– 
cp

 = 0°

● Best fit, assuming above params.

– 1 C.L. errors

– Excludes sin2(213) = 0 at 7.4 

 

NH :sin2
(2θ13)= 0.150−0.034

+0.039

IH : sin2
(2θ13) = 0.182−0.040

+0.046

T2K Preliminary

T2K Preliminary T2K Preliminary
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
e
- Appearance Results

● Repeat fit for other oscillation 
parameter values

– - < 
cp

 < 

– MH (
 
±|m2

32
|
 
) 

– sin2(
23

) (backup slide)

● Results consistent across runs

1D contours 
in 

cp

1D contours 
in 

cp

T2K Preliminary

T2K Preliminary

IH

NH
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Future Sensitivities
● Reactor Experiments:

– Measures 
e
-  disappearance

– P(
e
→ 

e
) ∝ sin2(2

13
)

– Very high precision
● T2K:

– Measures 
e
-  appearance

– P(→ 
e
) ∝sin2(2

13
), sin2(

23
), sin(

cp
)

– Differences due to 
23

 and 
cp

● If the Daya Bay result is assumed in 
T2K fits then T2K is sensitive to:
– CP violation

– The 
23

 octant

– MH (with NOA)

Daya Bay 
1  C .I .

● Study T2K sensitivity w.r.t.:
– Exposure: up to 7.8x1021 POT

– Run plan:  vs  beam

– Combined analysis: T2K + NOA

– Systematic uncertainty 
projections

1D contours in 
cp

T2K Preliminary

NH
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T2K Spectra at SK for 7.8x1021 POT 

● Calculated FD spectra for full T2K 
statistics
– Project SK MC to higher exposure

– Estimate  beam MC from flux ratios

● Simultaneous fit of , 
e
, , and 

e
 

samples
● Oscillation parameter uncertainties

– Fix solar terms
– Allow atmospheric terms to float within 

current uncertainties

– Project 
13

 uncertainties to Daya Bay 
systematic uncertainty:                                    
         ( sin2(2

13
) = 0.1±0.005 )

– MH and 
cp

 are unconstrained

● Assume various true values for:                
           

13
, 

23
, 

cp
, and MH


e


e

 
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T2K 50%  / 50%  + Daya Bay

● No Systematics (solid)

● With systematics (dashed)  ~10% for 
e
 and ~13% for 

–  samples assumes 2012 level systematics 

–  samples assume +10% additional uncertainty  

-  disappearance


e
-  appearance

True 
Value

True 
Value

90% CL
Allowed
Regions

90% CL
Allowed
Regions

NH

True 
Value

IH

NH

IH

Ability to determine CP violation as a function of true 
cp

No Systematics With Systematics
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T2K + NOA + Daya Bay
● Produce T2K spectra in GLoBES

● Reproduce NOA event spectra in 
GLoBES (right)

● Reproduce NOA results (below) using 
generated spectra

● Systematic Uncertainties:
– Treat T2K and NOA equally

– Allow normalizations to float
● Signal: 5%  
● Background: 10%

● T2K-only consistent across both studies


cp

 ≠ 0 90% CL

GLoBES: Comput.Phys.Commun. 167 (2005) 195
                Comput.Phys.Commun.177:432-438,2007

MH
Note:  = √2
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Combined Sensitivities
and Optimal Run Plan 

● CPV sensitivity 
– Greatly enhanced by 

combined fit

– Flat for run ratios            
  > 30%/70% 

● Mass Hierarchy
– Almost no sensitivity alone
– Large enhancement to 

NOA degenerate region

– Prefers more   running 
in combined fit

● Evaluated other metrics

● Metrics mostly flat for:      
70%/30% <   < 30%/70%

50%/50%  /  running

NH

NH

NH

NH

Variable  /  running

M
H

 D
et

er
m

in
at

io
n

50%/50%  /  running

C
P

V
 D

et
er

m
in

at
io

n

M
e

d
ia

n
 

2
M

in
im

u
m

 
2


2


2
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Conclusions

● The T2K experiments doubled its statistics in the past year and 
results are improving

● Analysis techniques continue to improve
– Improved data based constraints on the flux
– Better constraints from ND280

– Improved 0 rejection at  Super-Kamiokande 

● Measured   → 
e
 oscil lations rejecting 

13
 = 0 at 7.4

● Updated   → 
e
 result expected soon

● Continue to improve constraints in m2
32

 and 
23

● Future will bring improved measurements and sensitivity to CP violation, 
the 

23
 octant, and the mass hierarchy

– Beam upgrades will accelerate POT accumulation
– Antineutrino running pilot run proposed for 2014

– Combined fits with NOA and Daya Bay will open doors to new physics
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Backup 
Slides
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Neutrino Oscillation Formalism

U PMNS = (
c 12 s 12 0

−s 12 c 12 0
0 0 1) (

c 13 0 s 13e
−i δ cp

0 1 0
−s 13e

−i δcp 0 c 13
) (

1 0 0
0 c 23 s 23

0 −s 23 c 23
)

( νe νμ ν τ ) = U PMNS (
ν1
ν2
ν3

)

P (νμ→νe ) = 4c 13
2 s 13

2 s 23
2 sin2

Φ31(1+
2a

Δm 31
2

(1−2s13
2
))

+ 8c 13
2 s 12s 13s 23(c 12c 23 cos(δcp ) − s 12s 13s 23)cosΦ32sinΦ31sinΦ21

− 8c 13
2 c 12c 23s 12 s 13 s 23 sin( δcp ) sinΦ32sinΦ31sinΦ21

+ 4 s 12
2 c 13

2
(c 12

2 c 23
2

+ s 12
2 s 23

2 s 13
2

− 2c12c 23 s 12 s 13s 23 cos(δcp ) )sin2
Φ21

− 8c 13
2 s 13

2 s 23
2

(1−2 s 13
2
)
aL
4E

cosΦ32sinΦ31
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Pre-fit ND280 / SK Flux Correlations
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Pre-fit ND280 / SK Flux Correlations
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Flux Constraints – All  Samples
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CC 1 and CC multi  samples
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ND280 Pre-fit and Post-fit Matrices
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Fixed Oscillation Parameters
in Oscillations Fits to SK Data

Fit Parameter in 
Disappearance Fits

Fit Parameter in 
Appearance Fits
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- Disappearance Event Rate
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- Disappearance Comparison

† Null  
   Oscillation
   Expectation 
   204.7±16.7

†

†
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
e
- Appearance 

sin2(
23

) -vs- sin2(2
13

)

Normal Hierarchy Inverted Hierarchy

● Dotted lines indicate 2012 1 range on sin2(
23

) 
● Large effect on the best-fit central value
● Error bands increase for lower values of sin2(

23
)
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
e
- Appearance Runs 1-3 vs Run 4

Run1-4
Run1-3

Run1-4
Run4 

Run1-4
Run1-3

Run1-4
Run4 

N
o

rm
a

l 
H

ie
ra

rc
h

y

In
v

e
rt

e
d

 H
ie

ra
rc

h
y
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
e
- Appearance Event Rate 

Prediction and Uncertainties
2013 Event Rate 

Predictions

Systematic Uncertainties

Fit to 
ND280

SK

Other
Cross

Section

Run 1-4  6.393x10→ 20 POT
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
e
- Appearance Event Rate 

Prediction and Uncertainties
2013 Event Rate 

Predictions

Systematic Uncertainties

Run 1-4  6.393x10→ 20 POT
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● Other Backup for nue?: 
– contribution of rate and shape terms?
– P-value calculation
– Erec analyis
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Event Rate Expectations for
T2K and NOA
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T2K + NoA + Daya Bay: 
Allowed Regions in 

cp
-vs- sin2(

23
)

 cp
 =

 0
°

 cp
 =

 -
9

0
°

s in2(
23

)  = 0.5 sin2(
23

)  = 0.39

NH
100% 

NH
100% 

NH
100% 

NH
100% 

sin2(
23

)  = 0.39sin2(
23

)  = 0.39

NH
50% 
50% 

NH
50% 
50% 
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T2K + NoA + Daya Bay: 
90% C.L. Regions in 

cp
-vs- sin2(

23
)

1
0

0
%

 
5

0
%

/5
0

%
 

/

CP Violation

NH

NHNH

NH


23

 OctantMass Hierarchy

NH

NH



  50

Combined Sensitivities
and Optimal Run Plan 

● CPV sensitivity 
– Greatly enhanced by 

combined fit

– Flat for run ratios            
  > 30%/70% 

● Mass Hierarchy
– Almost no sensitivity alone
– Large enhancement to 

NOA degenerate region

– Prefers more   running 
in combined fit

● Evaluated other metrics

● Metrics mostly flat for:      
70%/30% <   < 30%/70%

50%/50%  /  running

NH

NH

NH

NH

Variable  /  running

M
H

 D
et

er
m

in
at

io
n

50%/50%  /  running

C
P

V
 D

et
er

m
in

at
io

n


2


2

Minimum 2

Median 2
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