Liquid Scintillator Detector Technology for Mass Hierarchy Determination with Reactor Neutrinos

Jun CAO

Institute of High Energy Physics

NNN13, Kavli IPMU, Kashiwa, Nov. 12, 2013

Neutrino Oscillation

Latest Results from Daya Bay

rate+shape analysis, arXiv: 1310.6732

 $\sin^2 2\theta_{13} = 0.090^{+0.008}_{-0.009}$ $\left| \Delta m^2_{ee} \right| = 2.59^{+0.19}_{-0.20} \times 10^{-3} \text{ eV}^2$

 $\Delta m_{ee}^2 \sim \mathbf{0.7} \Delta m_{31}^2 + \mathbf{0.3} \Delta m_{32}^2$ $\Delta m_{\mu\mu}^2 \sim \mathbf{0.3} \Delta m_{31}^2 + \mathbf{0.7} \Delta m_{32}^2 + CP$

Determine MH with Reactors

Precision energy spectrum measurement: interference between P_{31} and P_{32} \rightarrow Relative measurement

Further improvement with $\Delta m^2_{\ \mu\mu}$ measurement from accelerator exp.

 \rightarrow Absolute measurement

$$P_{ee}(L/E) = 1 - P_{21} - P_{31} - P_{32}$$

$$P_{21} = \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2(\Delta_{21})$$

$$P_{31} = \cos^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{31})$$

$$P_{32} = \sin^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{32})$$

S.T. Petcov et al., PLB533(2002)94 S.Choubey et al., PRD68(2003)113006 J. Learned et al., PRDD78 (2008) 071302 L. Zhan, Y. Wang, J. Cao, L. Wen, PRD78:111103, 2008, PRD79:073007, 2009

Interference: Relative Measurement

- The relative larger (0.7) oscillation and smaller (0.3) oscillation, which one is slightly (1/30) faster?
- Take Δm_{32}^2 as reference, after a Fourier transformation
 - NH: $\Delta m_{31}^2 > \Delta m_{32}^2$, Δm_{31}^2 peak at the right of Δm_{32}^2
 - IH: $\Delta m_{31}^2 < \Delta m_{32}^2$, Δm_{31}^2 peak at the left of Δm_{32}^2

Requirements

100k events=20 kton×35 GW×6 year

5

2.48

2.50

Experiments

JUNO (was Daya Bay-II)

➡ Idea in 2008 (PRD78:111103, 2008; PRD79:073007, 2009)

⇒ Approved in Feb. 2013

RENO-50

⇒ From RENO-50 workshop, Jun.13-14, 2013

JUNO Detector

The mechanics of the ~40 m diameter detector is challenging. Many options are under consideration.

JUNO Sensitivity on MH

MH sensitivity with 6 years' data of JUNO (Y.F. Li et al, PRD 88, 013008 (2013)):

- Statistics only: 4σ for relative measurement, 5σ with absolute measurement
- Taking into account the spread of reactor cores, uncertainties from energy non-linearity, backgrounds, etc. 3σ for relative measurement, 4σ with absolute measurement.

Absolute Measurement on MH

Effective Δm^2 for two-neutrino oscillations (reactor: Δm^2_{ee} , accelerator: $\Delta m^2_{\mu\mu}$)

RENO-50 Detector

RENO-50 (default)

 ♦ Need increase the default photoelectron yield by 5 times to reach 3%/√E if taking Mass Hierarchy as a major goal.

32 m

♦ Default RENO-50 detector:

--PMT coverage: 24 % (15,000 PMTs) --Atten. Length: 12.45 m --PMT QE: 24 %

Other Experiments/Proposals for MH

Exp.	Туре
T2K	Accelerator
Hyper-K	Accelerator & Atmospheric
NOvA	Accelerator
LBNE	Accelerator
PINGU	Atmospheric
LBNO	Accelerator
INO	Atmospheric
RENO-50	Reactor

JUNO: Competitive in schedule and Complementary in physics

- Have chance to be the first to determine MH
- Independent of the yet-unknown CP phase (Acc. and Atm. do)
- Combining with other experiments can significantly improve the sensitivity
- Well established liquid scintillator detector technology

Energy Resolution

JUNO MC, based on DYB MC (p.e. tuned to data), except ⇒ JUNO Geometry and 80% photocathode coverage ⇒ High QE PMT: maxQE from 25% -> 35% ⇒ Increase light yield of LS (+13% light)

⇒LS attenuation length (1 m-tube measurement@430 nm)

- from 15 m = absoption 24 m + Rayleigh scattering 40 m
- to 20 m = absorption 40 m + Rayleigh scattering 40 m

Red denote the R&D requirements to reach 3% energy resolution

Detector Challenges

- Three major challenges
 - ⇒ High transparency liquid scintillator (purification R&D)
 - ⇒ High efficiency PMT (new type PMT R&D led by IHEP)
 - Huge detector (mechanic options)

IBD Signal

Signal: $\overline{V}_e + p \rightarrow e^+ + n$ $\mathbf{n} + \mathbf{p} \rightarrow \mathbf{d} + \gamma (2.2 \text{ MeV})$ $\tau \sim 200 \ \mu\text{s}$

LS without Gd-loading for

- Better attenuation length \rightarrow E resolution
- Lower irreducible accidental backgrounds from LS, important for a larger detector:
 - With Gd: ~ 10^{-12} g/g
 - Without Gd: ~ $10^{-16} g/g$
- Less risk

Recipe: LAB + 3g/L PPO + 15mg/L bis-MSB

-> Daya Bay experience: safe, very good transparency

Linear Alky Benzene

- Improve production quality + Precise distillation in factory, followed by purification onsite.
- Specially produced LAB by the factory: Attn = 20.5 m
- After purification \rightarrow 24 m
 - Further purification of special Nanjing LAB
 - Al2O3 column (SiO2, activated carbon)
 - Vacuum distillation
 - Molecular distillation

Vacuum distillation

Rayleigh Scattering

M. Wurm et al: 40±5 m (Rev.Sci.Instrum. 81 (2012) 053301)
JUNO team: 27±1.2 m @430nm (to be verified, and test on purified sample)

Energy Non-linearity

Impact of non-linearity

- Repetitive small oscillation structure of the measure spectrum can self-calibrate non-linearity (PRD 88, 013008 (2013))
- Assuming an unknown
 2% residual non-linearity,
 the impact to MH is
 under control.

A new type of PMT: higher photon detection eff.

Low cost MCP by accepting the following:

- 1. asymmetri 2. Blind ch 3. Non-unifo 4. Flashing channels
- Top: transmitted photocathode
 Bottom: reflective photocathode
- MCP to replace Dynodes no blocking of photons

Prototypes

21

中国科学院西安光学精密和极研究所 ANN METTURE OF OFFICE AND INFECTION METHODS OF CAS 海南展创光电技术有限公司 HZCPHOTONICS CVNC Beijing Nackar Instrument Factory

Background

Assumptions:

- Overburden is 700m
 - E_m ~ 211 GeV, R_m ~ 3.8 Hz
- Single rates from LS and PMT are 5Hz, respectively
- Good muon tracking and vertex reconstruction
- Similar muon efficiency as DYB

	Daya Bay	Daya Bay II
Mass (ton)	20	20,000
E _m (GeV)	~57	~211
L _m (m)	~1.3	~ 23
R _m (Hz)	~21	~3.8
R _{singles} (Hz)	~50	~10

	B/S @ DYB EH1	B/S @ DYB II	Techniques needed for DYB II detector
Accidentals	~1.4%	~10%	Low PMT radioactivity; LS purification; prompt-delayed distance cut
Fast neutron	~0.1%	~0.4%	High muon detection efficiency (similar as DYB)
⁹ Li/ ⁸ He	~0.4%	~0.8%	Muon tracking; If good track, distance to muon track cut (<5m) and veto 2s; If shower muon, full volume veto 2s

JUNO: Brief schedule

- Civil preparation : 2013-2014
 - Current status: site survey completed. Civil design on-going.
- Civil construction : 2014-2017
- Detector R&D : 2013-2016
- Detector component production : 2016-2017
- PMT production : 2016-2019
- Detector assembly & installation : 2018-2019
- Filling & data taking : 2020

Kaiping Watch Towers

An UNESCO World Heritage Site

Thanks