Large Liquid Scintillator Detectors for Neutrinos and Nucleon Decays

L. Oberauer, TU München Physik-Department NNN-2013 Tokio, Japan, Nov. 2013

Content

- Detector scheme
- Solar neutrinos
- Supernova neutrino burst
- Diffuse Supernova Neutrino Background
- Geo-neutrinos
- Proton decay

LENA design study (LAGUNA consortium) for Pyhäsalmi (Finland)

LENATechnology: Status & Development

3 g/l PPO

1 1 1 1 1 1 1	
	Properties o
	Chemical da
	Chemical for
	Molecular w
	Density
	Viscosity
	Flash Point
	HMIS ratings
	Health
	Flammability
	Reactivity
	Optical para
	Index of refr
	Attenuation
	Absorption I
	Absreemiss
KUCKPLAN	Rayleigh sca

Properties of LAB				
Chemical data				
Chemical formula	$C_{18}H_{30}$			
Molecular weight	241			
Density	0.863 kg/l			
Viscosity	4.2 cps			
Flash Point	140 °C			
HMIS ratings				
Health	1			
Flammability	1			
Reactivity	0			
Optical parameters				
Index of refraction	1.49			
Attenuation length	~15 m			
Absorption length	40 m			
Absreemission length	60 m			
Rayleigh scattering length	40 m			

4

Solar Neutrinos in LENA

Solar Neutrino Physics

- Big success in the past
- Neutrinos are massive
- Neutrinos mix: $\sin^2 2\Theta_{12} = 0.314$
- Mass hierarchy: $m_2^2 m_1^2 = (+)7.9 \times 10^{-5} \text{ eV}^2$
- Solar Neutrino problem solved

...but two questions are open
Solar metallicity ?
MSW effect in ⁸B – spectrum ?

What can LENA do, to answer this questions ?

Solar neutrino detection in LENA

Scenario: LENA in Pyhäsalmi (Finland) at 4060 mwe

- Elastic neutrino electron scattering as in Borexino, SNO+ in principle all solar neutrino branches
- CC reaction v_e(¹³C,¹³N)e⁻ for solar ⁸B - neutrinos

Low E spectrum with backgrounds

Background rates:

Po210: 488.8 c/(d*100t) Bi210: 41.6 c/(d*100t) Kr85: 34.8 c/(d*100t)

...all from Borexino 2011 paper

C11: 5.6 c/(d*100t) C10: 0.11 c/(d*100t) Be11: 0.007 c/(d*100t)

Cosmogenic bg = 1/5 Borexino

²¹⁰Po position with $k_b = 0.107 \text{ mm/MeV}$ (alpha)

Search on small periodic variations

The high statistics in the ⁷Be – rate allows to search on small periodic flux variations

Search for modulations of the solar ⁷Be flux in the next-generation neutrino observatory LENA

M. Wurm,¹,^{*} F. von Feilitzsch,¹ M. Göger-Neff,¹ T. Lewke,¹ Q. Meindl,¹ R. Möllenberg,¹ L. Oberauer,¹ W. Potzel,¹ M. Tippmann,¹ and J. Winter¹

¹Physik-Department E15, Technische Universität München, James-Franck-Str., D-85748 Garching, Germany (Dated: November 12, 2010)

Motivation: Day/Night Matter effect, Correlations to the solar cycle, Helioseismic waves in the neutrino-sphere...

Search on small periodic variations

 $N(t) = N_0 \cdot (1 + A \cdot \sin(t/T + \varphi))$

"Lomb-Scargle" power P to find modulations:

$$P = \frac{1}{\sqrt{2\sigma^2}} \left(\frac{\left[\sum_{i=1}^n w_i (N(t_i) - N_0) \cos\left(2\pi \frac{t_i - \phi}{T}\right)\right]^2}{\sum_{i=1}^n w_i \cos^2\left(2\pi \frac{t_i - \phi}{T}\right)} + \frac{\left[\sum_{i=1}^n w_i (N(t_i) - N_0) \sin\left(2\pi \frac{t_i - \phi}{T}\right)\right]^2}{\sum_{i=1}^n w_i \sin^2\left(2\pi \frac{t_i - \phi}{T}\right)} \right)$$

here we use $w = w_i$ (they all cancel)

FIG. 2: Lomb-Scargle periodigrams for a MC data set of 2 years measurement time. Left: White noise spectrum. Right: A modulation of 2% relative amplitude and a period of 0.1 years was included. A corresponding peak is visible at the indicated period, that is also clearly exceeding the regular white noise level.

SensitivitiesDay / Night effect $A = 10^{-3}$ Gravity driven helioseismic waves are confined to the inner regions of

Gravity driven helioseismic waves are confined to the inner regions of the Sun

Do they exist? SOHO hints to a $f = 220,7 \mu$ Hz signal

A. Jimenez and R. A. Garcia, Astrophys. J. Suppl. 184, 288 (2009), astro-ph/0908.0562.

SNO Collaboration, B. Aharmim et al., Astrophys. J. 710, 540 (2010), astro-ph/0910.2433.

With LENA sensitivites of $A \sim 0.005$ could be reached

(i.e. 90% discovery chance for > 3 sigma)

pep- and CNO neutrinos

Rate pep: 342 (per day in 30 kton) Rate CNO: 156 (per day in 30 kton) Roadmap for successful pep and CNO measurement:

- Fid. Mass 30 kton (kill ext. gammas)
- Reduce cosmogenic ¹¹C via 3fold coinc. by factor 10
- Tag ²¹⁰Bi (the "big enemy") via ²¹⁰Po alpha counting (saecular equilibrium necessary)
- Subtract ²¹⁰Bi statistically
- Win pep and CNO if LENA ²¹⁰Bi
 bg < 10 10² Borexino bg
- Separate pep and CNO via spectral analysis (pep – "shoulder")

⁸B-neutrino detection

Roadmap for a low E measurement:

- Fid. Mass 20 kton (kill ext. Gammas)
- ¹⁰C cosmogenic background direct rejection via muon veto
- ²⁰⁸Tl intrinsic background statistical substraction via Bi-Po counting

(here Borexino value from 2007 is assumed) After 1 y: remaining bg rate (3σ) limit) < 10^{-2} If 208 Tl bg in LENA = 100 x Borexino -> signal / bg ~ 1 (after 1 year, 3 sigma limit)

Neutrino rate: 38 / (per day in 20 kton)

energy threshold <u>2 MeV</u> reachable

The ¹³C - reaction
cc - reaction:
$$\nu_e^{+^{13}} C \rightarrow^{13} N(\text{gnd}) + e^{-}$$

 $Q = 2.22 \text{ MeV} \implies \text{only }^{\$} B$ solar neutrinos are detectable
 $E_e = E_{\nu} - Q + m_e \implies \text{Neutrino spectroscopy by an event to event basis}$
 $^{13}N \rightarrow^{13}C + \nu_e + e^+ \qquad \tau = 862.6 \text{ s.} \qquad \log(ft/s)^{\exp} = 3.667 \pm 0.001$

This offers *delayed coincidence* technique for LENA (prompt + delayed signal) $E_{vis, delayed} = [1.02 \text{ MeV}, 2.22 \text{ MeV}]$ efficient for *background rejection*

¹³C – event rate in LENA

Natural abundance of ¹³C: Number of ¹³C nuclei (50 kton LAB scint.): Solar ⁸B neutrino flux: Survival probability (MSW effect): Average cross section for solar ⁸B neutrinos:

Event rate (without cuts):

Preliminary Monte-Carlo studies suggest: M_{fiducial} ~ 30 kton Detection efficiency ~ 0.75

What can we do with this signal?

 $R_{Lena}(2.2 \text{ MeV}) \sim 1.2 / \text{day}$

y = 1.07 % $n_{13} = 2.4 \times 10^{31}$ $\Phi = 5.8 \text{ x} 10^6 \text{ cm}^{-2} \text{s}^{-1}$ $p_{ee} = 0.3$ $<\sigma> = 8.57 \times 10^{-43} \text{ cm}^2$

$$R = n_{13} \Phi p_{ee} < \sigma > ~ 3 / day$$

Background considerations

Is the up-turn observable ?

19 kt fiducial volume

Yes, **LENA** can probe the MSW up-turn at >5 sigma in less than 5 years

Solar Neutrinos in LENA Conclusions

- Very high statistics in ⁷Be allows to search for small flux fluctuations
- CNO- and pep-neutrino measurement possible, if ²¹⁰Bi bg < 10 to 100 (Borexino)
- Solar ⁸B-spectrum from 3 MeV via elastic scattering off electrons, if ²⁰⁸Tl bg < 100 (Borexino)
- Solar ⁸B-spectrum via ¹³C charged current reaction from 4 MeV (~ 425 counts / year)
- Test of the MSW-effect via a combined analysis of $\nu\text{-}e$ scattering and ^{13}C cc reaction

Background calculations and spectral analysis by PhD thesis from Randolph Möllenberg (TUM)

Supernova Neutrino Burst

LENA and a galactic supernova

• 8 M_{\odot} (3 · 10⁵³ erg) at D = 10 kpc (center of our galaxy)

In LENA detector: \sim 15000 events

Possible reactions in liquid scintillator

$$1 \quad \overline{\nu}_{e} + p \rightarrow n + e^{+}; \ n + p \rightarrow d + \gamma \qquad \sim 7\ 000 - 13\ 800$$

$$2 \quad \overline{\nu}_{e} + {}^{12}C \rightarrow {}^{12}B + e^{+}; \ {}^{12}B \rightarrow {}^{12}C + e^{-} + \overline{\nu}_{e} \quad \sim 150 - 610$$

$$3 \quad \nu_{e} + {}^{12}C \rightarrow e^{-} + {}^{12}N; \ {}^{12}N \rightarrow {}^{12}C + e^{+} + \nu_{e} \quad \sim 200 - 690$$

$$4 \quad \nu_{\chi} + {}^{12}C \rightarrow {}^{12}C^{*} + \nu_{\chi}; \ {}^{12}C^{*} \rightarrow {}^{12}C + \gamma \qquad \sim 680 - 2\ 070$$

$$5 \quad \nu_{\chi} + e^{-} \rightarrow \nu_{\chi} + e^{-} \quad \text{(elastic scattering)} \qquad \sim 700$$

$$6 \quad \nu_{\chi} + p \rightarrow \nu_{\chi} + p \quad \text{(elastic scattering)} \qquad \sim 1\ 500 - 5\ 700$$
Diploma thesis by J.M.A. Winter (TU München)²⁰

Neutrino elastic scattering off protons

Analysis and Physics goals

Observables

$\overline{\mathbf{v}_{e}}$ spectrum

very high statistics free of background

v_{e} spectrum

- ~ (5-10) % accuracy
- **Total flux** of all active neutrinos via ¹²C-nc reaction
- ν_μν_τ sum spectrum *via scattering on p*

Astro- and Neutrino physics

- Observation of Initial neutronisation burst
- Time resolved cooling phase
- Separation of SN models

due to large NC statistics – independent from oscillation physics

Information on Mass hierarchy, Theta_13

matter effects in the SN and Earth collective oscillations

Trigger for Gravitational wave antenna

Pre-SN neutrino detection

fusion stage	t	$\langle E \rangle [\text{MeV}]$	L [erg/s]
С	0.03-2.82 ky	0.71	$7.4 \cdot 10^{39}$
 Ne	0.03-0.73 y	0.99	$1.2 \cdot 10^{43}$
0	0.01-4.77 y	1.13	$7.4 \cdot 10^{43}$
Si	0.2-18.3 d	1.85	$3.1 \cdot 10^{45}$

Diffuse Supernova Neutrinos

Detection of DSNB flux

Isotropic flux of all SNv's emitted in the history of the Universe.

Faint signal: $\Phi_v \approx 10^2 / \text{cm}^2 \text{s}$

Detection of \overline{v}_e by inverse β decay:

 $\overline{\nu}_{e}$ + p -> e⁺ + n

Remaining background sources

- \blacksquare reactor and atmospheric $\nu_e{}^\prime s$
- cosmogenic backgrounds

Scientific gain

- first detection of DSNB
- information on average SNv spectrum

Expected rate: 2-20 \overline{v}_{e} /(50 kt y) (in energy window from 10-25MeV)

Most dangereous bg: Atmospheric v nc events on ^{12}C

Factor ~ 20 above signal Only ~ 40% can be tagged (via ¹¹C)

PSD techniques applicable ? Labor measurements at TUM LENA MC simulations

Reaction channel	Branching ratio
(1) $\nu_{\mathrm{x}} + {}^{12}\mathrm{C} \rightarrow \nu_{\mathrm{x}} + \mathrm{n} + {}^{11}\mathrm{C}$	40.6 %
(2) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + {\rm p} + {\rm n} + {}^{10}{\rm B}$	20.1 %
(3) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + 2{\rm p} + {\rm n} + {}^{9}{\rm Be}$	16.0 %
(4) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + {\rm p} + {\rm d} + {\rm n} + {}^{8}{\rm Be}$	7.0 %
(5) $\nu_{\rm x} + {}^{12}{\rm C} \rightarrow \nu_{\rm x} + \alpha + {\rm p} + {\rm n} + {}^{6}{\rm Li}$	6.6%
other reaction channels	9.7 %

Atmospheric neutrino events as bg for DSNB neutrino search via IBD in LENA

Results on PSD in LENA

Background source	Rate [10 y]
Reactor neutrinos	2.1
Atmospheric $\bar{ u}_e$	2.4
⁹ Li $eta^ n$	< 0.01
Fast neutrons	0.6
Atmospheric NC	25.1
Sum	30.2
$DSNB\;(\langle \mathrm{E}_{\nu}\rangle = 12\mathrm{MeV})$	19.3

Figure 6.12: The tail-to-total ratio for IBD (denoted in blue) and neutron events (denoted in red) in the center of LENA with $E_{vis} = 9.2 \text{ MeV}$.

$\langle E_{\nu} \rangle$	Expected	5% background	25 % background
	DSNB events [10 y]	uncertainty	uncertainty
12 MeV	19.3	3.0σ	1.5σ
15 MeV	27.7	4.1σ	2.1σ
18 MeV	34.0	5.0 σ	2.6σ
21 MeV	38.0	5.6 σ	2.9σ

- Detection with 3σ sign. possible if the background expectation is known with 5% uncertainty
- For $\langle E_{\nu} \rangle > 18\,{\rm MeV}$, a 5 σ detection of the DSNB is possible

DSNB exclusion power after 10y measurement

Figure 6.17: The 3σ (depicted in blue) and 90 % C.L. (depicted in red) exclusion contours for the supernova rate $R_{SN}(z = 0)$ and the mean supernova neutrino energy, assuming 5% background uncertainty and that no DSNB signal was detected $(N_{det} = \langle N_{bg} \rangle)$. For comparison, the current 1σ confidence interval for $R_{SN}(z = 0)$ is also depicted (green dashed line).

Geo Neutrinos

Geo Neutrino Detection in LENA

Uranium- and Thorium– radioactive decay chains (beta decays)

Detection via inverse beta decay (E_{threshold} = 1.8 MeV)

Event rate corresponds to the radioactive contribution to the Earths heat production

Intrinsic background basically negligible

Irreducible background from nuclear power reactors $(E_{max} \sim 8 \text{ MeV})$

Statistic subtraction possible

Geo-Neutrinos

Separation U / Th contribution > 5 sigma after 5 years at Pyhäsalmi

At Pyhäsalmi

- expected geo-v rate: 2x10³
- reactor- ν background: 7×10^2

What can we learn?

- contribution of U/Th decays to Earth's total heat flow → 1%
- relative ratio of U/Th \rightarrow 5%
- with several detectors at different sites: disentangle oceanic/continental crust
- test for hypothetical georeactor

Proton Decay

LENA and proton decay

 High efficiency and very good background rejection for p -> K⁺ v

K and μ, π from successive K decay K -> μ ν (68 %) K -> 2 and 3 π (31 %) (12 nsec)

Background rejection

Main background: atmospheric neutrino interactions in the target

Background rejection: pulse shape discrimination

• Proton decay efficiency: 68%

Background rejection 10⁻⁴

Rise time distribution proton decays (MC)

Rise time distribution atmospheric neutrinos (MC)

LENA and proton decay

• High sensitivity to p -> K ν (eff. ~ 68% roughly 10 x SK

Limit (90% cl) after 10 years: $\tau \sim 5 \times 10^{34} \text{ y}$

- Sensitive to a variety of decay channels "invisible" modes, e.g. n -> v v v
- For e.g. $p \rightarrow e^+ \pi^0$ we expect ~ 10^{33} y (work in progress)

T. Marrodan et al., Phys. Rev. D72, 075014 (2005)

Conclusions

- Solar Neutrinos: probing MSW up-turn, CNO, high statistical ⁷Be-neutrinos
- SN: separation between ν_e and $\bar{\nu_e}$, and between ν_e , $\bar{\nu}_e$ versus ν_μ + ν_τ
- DSNB: > 3 sigma discovery potential and test of SN predictions
- GEO: separation between U- and Th-contribution and test of geophysical models
- Nucleon Decay: 5 x 10^{34} y limit after 10y for p \rightarrow K⁺ v

Spare slights

Input parameter of calculations

The solar neutrino fluxes according to astro-ph/0412440v3 (BS05(AGS,OP) were used [cm^-2 s^-1]:

pp: 6.06e10 pep: 1.45e8 hep: 8.25e3 7Be: 4.34e9 8B: 4.51e6 13N: 2.01e8 15O: 1.45e8 17F: 3.25e6

The MSW effect was included according to hep-ph/0404083, distribution of the neutrino sources according to astro-ph/0412440v3 (values of the mixing matrix were choosen according to pdg 2012).

Background rates:

Po210: 488.8 counts/(day*100t) Bi210: 41.6 counts/(day*100t) Kr85: 34.8 counts/(day*100t) C11: 28.0 counts/(day*100t) according to the Borexino Be7 paper from 15.07.2011 (the used data was recorded between 16.05.2007 and 02.05.2010).

C10: 0.54 counts/(day*100t) Be11: 0.035 counts/(day*100t) Tl208: 0.084 counts/(day*100t) according to the Borexino B8 paper (29.4.2010)

The background rates for the cosgenically produced isotopes C10,C11 and Be11 we reduced by a factor of 5, due to the reduced muon flux at phyhäsalmi

C14: 3e6 counts/(day*100t) according to Alimonti, G.; et al. (1998). "Measurement of the 14C abundance in a low-background liquid scintillator". Physics Letters B 422 (1–4): 349–358

Event rates:

elastic neutrino scattering:

Be7: 8.6e3 counts/(day*36kt) (above 300 keV) pep: 342 counts/(day*30kt) (above 700 keV) CNO: 156 counts/(day*30kt) (above 700 keV) B8: 38 counts/(day*20kt) (above 3 MeV)

C13 channel:

above 4 MeV (75% detection efficiency) B8: 283 counts/(y*20kt)

Alpha beta discrimination was applied (95% beta acceptance, 99.7% alpha discrimination)

kb values: e-: 0.15 mm/MeV alpha: 0.107 mm/MeV

according to measurements of the DC veto scintillator (Thesis "Ionization quenching by Low Energy Electrons in the Double Chooz Scintillators by Stefan Wagner, and measurements by Christian Abele)