Photo-detector R&D for next generation NNN detectors

F. Retière

Experiment	Photo- detector#	Phot. Det. area (cm ²)	Sensitive area (m ²)	Construction time scale	Туре
LBNE (collector)	4,800	4.84 (1760)	0.06 (22)	?	Liquid Ar.
EXO-200 / nEXO	468/10,000	2 / 1-2	0.1 / 1-2	Done/2018-2021	Liquid Xe.
SNO+	10,000	330 (8")	320	2011-2016	Liquid Scint.
Daya Bay 2	15,000	2040 (20")	3,000	2016-2020	Liquid Scint.
RENO-50	3,000	510 (10")	150	?	Liquid Scint.
Super-K	11,146	2040 (20")	2,260	Operating	Water Ce.
LBNE Ce.	~38,000	735 (12")	2,800	Defunct	Water Ce.
Hyper-K	99,000	2040 (20")	20,000	2016-2024	Water Ce.
MICA-KM3NET	450,000	46 (3")	2,050	2018-2024	Water Ce.
LENA	45,000	330 (8")	1,460	?	Water Ce.

11/1 Large area Photo-Multipliers main cost driver of most experiments

Lets get the PPDs out of the way

- Dark noise kills any application requiring large area and low dark noise
- Not an issue in LXe & LAr
 - Pros (compare to PMTs):
 - Higher efficiency
 - Low gain fluctuation
 - Lower radioactivity
 - Better timing resolution
 - Cons:
 - Cost currently ~100\$/cm² vs 10\$/cm² for PMT
 - High capacitance

 Pixelated Geiger-ode avalanche Photo-Diode
 = silicon photomultiplier

Requirements and outline of solutions

- Low cost \rightarrow photo-coverage
 - Cheap solution for enhanced photon collection
 - Bring competition to market (Texas PMT, use small PMTs)
 - Develop easier to make PMTs
- Enhanced photo-detection efficiency
 - Hamamatsu HQE and better index of refraction matching
- Good timing resolution
 - Large area MCPs
 - Focusing MCPs
 - Box&line dynodes
- Photon counting capabilities
 - Low electronics noise, easy to get with high gain PMT
 - Low gain fluctuations with hybrid Photo-detector

Reducing photo-cathode coverage by enhancing photon collection

- Cone
 - Increase light collection by up to 50%
 - Decrease fiducial volume

- Wavelength shifter
 - May increase light collection by >x2
 - Cons:
 - worsen timing resolution
 - Some background reemitted light

Trapping reemitted light either by total internal reflection or mirrors

Trapping efficiency:

- ~30% with total internal reflection independently of number of bounces
- 98.5%^{nbounce}with mirrors
- Can combine both

11/12/2013

Geant4 simulations

Photon Collection Performance 100 cm Traps

Configuration		Primary	Internal	External	Ext/Int	Total
20" PMT	46cm (~20") HOTOCATHODE Water	1*	0	0	N/A	1
12" PMT + 3cm WLS + side mirrors	100cm Wavelength shifter & t Water	0.43	0.38	0	N/A	0.80
12" PMT + 3cm WLS + side & back mirrors + WLS dichroic mirror	100cm Wavelengtrishifter 5 + Ball PMT 30cm (~12") Water	0.42	0.43	0.13	0.30	0.98
12" PMT + 15cm WLS + side & back mirrors + dichroic mirror	Dichroic mirror WLS or water 100cm * Wavelength shifter Ball PMT 30cm (~12") Broadband mirror	0.34	0.56	0.47	0.85	1.37
12" PMT + 3cm WLS + side & back mirrors + dichroic mirror	Dichroic mirror Wavelength shifter Water Uwavelength shifter Water	0.34	0.44	0.35	0.79	1.14
12" PMT + 5mm WLS + side & back mirrors + dichroic mirror	Dichroic mirror Werelength shifter Water	0.35 E Nurozla	0.21 er et al. (TRI	0.41	2.00	0.96

1600

1400

1200

1000

800

600

400

200

100

120

140

Time Insl

Absorption/WLS Emission/Secondary Absorption

Primary Detection

160

WLS emission
Secondary detection

Detection time of trapped photons is rather long

Trap Detection Timing

F.Nurozler et al. (TRIUMF)

	WLS size [cm]	Mean [ns]	RMS
	100	19.3	19.9
	90	17.0	18.5
	80	14.5	16.8
	70	11.8	14.6
	60	9.1	12.6
	50	6.2	9.7
/	40	3.6	6.5

11/

Direct & WLS combo

Texas PMT to make the market more competitive

- Develop capabilities of ADIT/ETL companies from Sweetwater Texas
 - Supported by NSF
 - Goal is the development of a US based manufacturer of large area PMTs
- Plan
 - 11" PMTs that could be used for HK veto
 - First prototypes summer 2014
 - Complete tests at Davis,
 Penn, Drexel by mid 2015

11" PMT provisional data sheet

_		unit	min	typ	max
pi a c c li v v dy	hotocathode: bialkali active diameter active surface area quantum efficiency at peak uminous sensitivity vith CB filter vith CR filter ynodes: 12LFSbCs	mm cm² % µA/Im	8	270 800 30 70 12 1	
ar r c c	node sensitivity in divider A: nominal anode sensitivity max. rated anode sensitivity overall V for nominal A/Im overall V for max. rated A/Im	A/Im A/Im V V		500 2000 1400 1550 7	1800
	ark current at 20 °C: dc at nominal A/Im dc at max. rated A/Im dark count rate	nA nA s ⁻¹		20 80 20000	200
pr c pr s	divider A divider B ulse height resolution: single electron peak to valley	mA mA ratio		30 100 2	
ra te tii	te effect (I _a for ∆g/g=1%): mperature coefficient: ming: single electron rise time	µA % °C ⁻¹ ns		20 ± 0.5 5	
s s t w	single electron fwhm single electron jitter (fwhm) ransit time eight: avinum ratings:	ns ns ns g		6 3 62 2600	
	anode current cathode current gain sensitivity	μA nA x 10 ⁶ A/Im			100 2000 30 2000
t 11/12/20	emperature / (k-a) ⁽¹⁾ / (k-d1) / (d-d) ²⁾ ambient pressure (absolute)	°C V V V kPa	-30		60 2350 750 300 808

IUMF Alternate option pursued by KM3Net and possibly MICA

pressure vessel by Nautilu similar to planned layout

cylinder segment

metal adapter

- Use small PMTs
 - High granularity required for background rejection in KM3Net
 - Several manufacturer of small PMTs
- Photon trap could be used in this configuration
 - Cover the inner side of the glass with dichroic mirrors
 - Add wavelength shifter sheets with mirror backing between PMTs

Control and the second seco

- Hamamatsu High quantum efficiency
 - PDE increased from 20 to 30%
 - Also better matching index of refraction matching using BeO?
 - Reduce Fresnel reflection
- Matching to SK water property off by 50 nm

8000

 ⁸ ⁴⁰ ⁴⁰ ⁴⁰ ⁴⁰ ⁴⁰

30F

25

20

15⊢

10F

5

0

300

350

400

QF

ZP0007

ZP0012

ZP001

ZP001 ZP002

ZP0022 ZP0024

ZP0025

550

500

450

••• Normal SK PMT

600

650

Wave Length [nm]

HQE PMT

SK PMT

700

13

Improving timing resolution

- Currently limited by PMT transit time spread to 2-5ns (per photons)
- LAPPD collaboration has shown the benefit of sub-ns resolution
 - Improved vertex resolution
 - Improved pattern recognition

T. Xin, I Anghel, M. Wetstein, M. Sanchez

Large Area Pico-second Photon

Detector

Goals

Single photon timing resolution<100ps

Large scale manufacturing

Solution

- "Standard" photo-cathode
- Micro-channel plates
- Modular tileable solution
 - Expected to be fairly cheap
 - Tile unit 8"x8"
- High speed electronics
 - With transmission line

LAPPD collaboration

LAPPD status

Pictures cropped out of a talk by A. Elagin (U. Chicago)

 Managing construction + assembly steps

LAPPD status 2

- Excellent single photon timing resolution
- Good photo-detection efficiency

Alternative to MCP: transmission dynodes

- Inspired for gaseous photodetector
 - Micromegas + timepix
 - Use MEMs technology to build membranes supported by pilars
 - Photo-cathode technology unchanged
- Time Photon Counter (Tipsy)
 - High gain from amplification through membrane + low noise pixel electronics

Main challenge is to achieve sufficient secondary emission

 Then mechanical stability will be an issue!

Harry Van Der Graff et al. (Delft/Nikhef)

11/

Focus MCP PMT for Data Bay 2

Slides copied from S. Qian (IHEP) IEEE NSS talk

Quantum Efficiency (QE): of Transmission Photocathode 30%; of Reflection Photocathode 30%; Collection Efficiency (CE) of MCP: 70%;

PD = $QE_{Trans}^*CE + TR_{Photo}QE_{Ref}^*CE = 30\%^*70\% + 40\%^*30\%^*70\% = 30\%$ Photon Detection Efficiency: 15% \rightarrow 30% ; $\times \sim 2$ at least !

Horizontal configuration results

Slides copied from S. Qian (IHEP) IEEE NSS talk

The Design MCP-PMT

The Prototype

The signal of the 8 inch PMT

The I-V curve of the PC

11

The body resistance of the MCP

The SPE of the PMT

Vertical configuration results

Slides copied from S. Qian (IHEP) IEEE NSS talk

The Design MCP-PMT

The Prototype

The signal of the 8 inch PMT

The I-V curve of the PC

The body resistance of the MCP

The SPE of the PMT

21

Hyper-K R&D approach Y. Hayato¹, S. Hirota², I. Kametani¹, M. Nakahata¹, T. Nakaya², S. Nakayama¹, Y. Nishimura¹, M. Shiozawa¹, Y. Suda³, H. Tanaka¹, K. Tateishi², M. Yokoyama³ ¹Institute for Cosmic Ray Research, The University of Tokyo ²Department of Physics, The Kyoto University ³Department of Physics, The University of Tokyo

20" PMT (Venetian-Blind dynode)

- Super-K ID PMTs
- Used for ~20 years
 → Guaranteed
- Complex production
 - \rightarrow Expensive

Lower

11/12/201**Risk**

20" Improved PMT (Box&Line dynode)

- Under development
- Better performance
- Same technology
 - \rightarrow Lower risk

20" HPD (Hybrid Photodetector)

- Under development
- Far better performance
- Simple structure
 → Lower cost
- New technology
 → Higher risk

Higher Performance²

HPD concept

Hyper-K photodetector candidates

	20" PMT	New 20" PMT	20" HPD	
Gain	1×10^{7}	1×10^{7}	$10^4 \sim 10^{5*}$	
C.E.	80%	93%	95%	
T.T.S. (FWHM)	5.5ns	2.7ns	0.75ns*	* w/o Preamp
P/V ratio@1p.e.	1.7	≥2.5	>3	

11/12/2013

Estimated values

8" HPD prototype

Ten 8" HPDs were made for long-term testing

High voltage module (2ch 10kV/500V Max.)

HV module and preamplifier are packed and waterproofed

 \rightarrow No HV line in water

Spectral response		300 - 650 (420 max.) nm	
Photocathode		Bialkali	
Window material		Borosilicate glass	
Gain		$4 - 9 \times 10^4$	
Time	Rise	1.7 ns	
Fall		2.7 ns	
	T.T.S.	0.62 ns (σ)	
Dynamic range		100 pC (1.5x10 ⁴ p.e.) 25	

11/12/2013

HPD measured performances

- Single PE identification
 Remain for 20" (20mm² APD)?
- Dark noise / unit area comparable to PMT

New 20" photodetector development status

- Hamamatsu Photonics K.K. is making prototypes of
 - New 20" PMT (Box&Line dynode)
 - 20" HPD
 - Both with high-QE photocathode

Planning to start a testing in this year

Future photo-detectors for NNN

- Incremental improvement
 - Texas PMT for market diversity
 - Box&line dynode for improved timing
 - Improved photo-detection efficiency
 - Innovative photon collection solution
 - Using WLS + dichroic mirror
 - My guess: pre 2020 detectors

- Game changing solutions
 - <100ps timing resolution with LAPPD (MCP), TYPSI, and cold PPDs (SiPMs)
 - Single photon charge resolution with HPDs & cold PPDs (SiPMs)
 - Need new optimum reconstruction (ala fitQun)
 - My guess: post 2020 detectors
 - If you are not too conservative
 - Is HK pre or post 2020?

Thank you

Photodetector installation to EGADS

All 240 photodetectors were installed in July-August

Active work by young students

HPD with supporting frame

Water-proof cable connection

Cable connection in the tank

Trap Size Analysis: WLS Trap

WLS size [cm]	Primary	Secondary	Total	Mean [ns]	RMS
100	0.43	0.38	0.80	16.3	17.9
90	0.43	0.32	0.75	14.1	16.3
80	0.43	0.27	0.69	12.0	14.8
70	0.43	0.21	0.64	9.6	13.0
60	0.43	0.16	0.58	7.4	11.0
50	0.43	0.10	0.53	5.1	8.8
40	0.43	0.06	0.48	2.9	6.3

Details

- Detection numbers are normalized to what a 20" PMT would detect.
- WLS trap: Including a 3cm thick WLS surrounded by side mirrors to support internal reflection.
- Mean and RMS: of time difference between PMT detection and WLS emission.

Photo-detector

	Pros	Cons
ΡΜΤ	Low dark noise Very high gain Low capacitance (low elec. Noise)	-Cost -Fragile -Large gain fluctuations -Max efficiency ~35% -Radioactivity -High voltage
HPD (APD based)	Low dark noise (in principle) Lower cost than PMT (?) Low gain fluctuations (SPE id)	 -Low gain and high capacitance → challenge for electronics -Max efficiency ~35% -Very high voltage
SiPM	 -Low dark noise below -100°C -Max efficiency 55% (going up) -Low cost (mass production) -Low radioactivity -Low operating voltage -High gain and low fluctuations 	 -Huge dark noise at room temp. → non-starter for water Cerenkov -Large capacitance → large area may be challenging for electronics (need R&D)

11/12/2013

0^C

[L] ≻

Detection Efficiency: WLS Trap

Secondary Detection/Secondary Emission

Average Trap Time

40 times more statistics in these 100 cm WLS traps.

X [cm]

