

Hyper-Kamiokande R&D

Francesca Di Lodovico (QMUL) on behalf of the Hyper-Kamiokande working groups

> NNN13, Kavli, IPMU 11-13 November 2013

The Hyper-Kamiokande Project

<u>Multi-purpose neutrino experiment.</u> →Main goal: CP violation

Neutrino oscillations, using both:

- Neutrino beam from J-PARC (expected beam > 1MW)
- > Atmospheric neutrinos
- Search for proton decay
- Solar neutrinos

•<u>Astrophysical neutrinos</u> (supernova, dark matter, solar flare, ...)

Neutrino geophysics

Hyper-Kamiokande Overview

25 x Super-Kamiokande 3

Hyper-Kamiokande Overview

•Water Cherenkov, proved technology & scalability: System Excellent PID at sub-GeV region >99% Large mass \rightarrow statistics always critical for any measurements. Access Tunnel Total Volume 0.99 Megaton 0.74 Mton Inner Volume Fiducial Volume 0.56 Mton (0.056 Mton \times 10 compartments) **Outer Volume** 0.20 Mton 99,000 20"Φ PMTs for Inner Detector (ID) Photo-sensors (20% photo-coverage) 25,000 8"Φ PMTs for Outer Detector (OD) Tanks 2 tanks, with egg-shape cross section 48m (w) \times 50m (t) \times 250 m (l)

25 x Super-Kamiokande 4

Outline

Physics in a nutshell

•R&D

- Software
- > (Beam &) Near Detectors
- Cavern Construction
- > Detector Design
- PMTs
- Others

Schedule and Summary

Letter of Intent, Hyper-K WG arXiv:1109.3262 [hep-ex] and updates

Physics in a Nutshell

Tokai-2-Hyper-Kamiokande Super-KAMIOKANDE Hyper-Kamiokande Based B

- Natural extension of the technique being proven by the success of T2K:
 - > Use J-PARC beam
 - > Hyper-K at 295km as Super-K
 - > Off-axis narrow-band beam
 - > E ~0.6 GeV

Expected Unoscillated Neutrino Flux at Hyper-K

Expected Sensitivity to CP Violation

CPV discovery sensitivity w/ mass hierarchy known.

 δ precision:

• Assuming 5% nominal systematics and 0.750MW/y (3y vbeam and 7y v-beam), 74% region of δ can be covered at 3 σ . •It corresponds to a precision of < 10° for δ =0°.

Using Atmospherics

• Sensitivity mainly depends on θ_{23} , δ , and MH. • 3σ mass hierarchy determination for $\sin^2\theta_{23} > 0.42$ (0.43) for normal (inverted) hierarchy (10y).

• <u>Caveat</u>: the $\Delta \chi^2$ method to determine σ is used. Ongoing work to use Qian et al., PRD 86, 113011 (2012).

 δ_{cp} Uncertainty

3σ

2σ

0.6

0.55

NH True

 $\Delta\,\chi^2$ Wrong Hierarchy Rejection

30

25

20

15⊦

10

0.4

0.45

 $\sin^2 \theta_{22}$

Hierarchy is unknown, but
 NH is true.

- True $\delta_{CP} = 0.0$; $\sin^2 2\theta_{13} = 0.10$; $\sin^2 2\theta_{23} = 1.0$
- Degenerate solution exists at 3σ for the beam-only case.

Proton Decay Sensitivities

Year

- 10 times better sensitivity than Super-K
- Hyper-K surpasses SK limits in ~1y
 - > p \rightarrow e π^{0} : 1.3×10³⁵ y at 90%CL
 - > $p \rightarrow \nu K^+$: 2.5 × 10³⁴ y at 90%CL
 - Many other modes:
 - $\checkmark (p,n) \rightarrow (e,\mu) + (\pi,\rho,\omega,\eta)$
 - K⁰ modes
 - $\sim \nu \pi^0, \nu \pi^+$

"Other" Physics Topics at Hyper-K

•Solar Neutrinos: 200 v's / day from Sun \rightarrow study of day/night asymmetry of the solar neutrinos flux.

Astrophysical neutrinos:

- > ~200k v's from Supernova at Galactic center (10kpc)
 - \rightarrow time variation & energy can be measured with high statistics
- For supernova explosions outside our galaxy, we expect ~30-50 events from M31 (Andromeda Galaxy)
- > We expect ~310 SRN in the energy range ~30-50 MeV for 10y.

•Solar flare neutrinos can be detected by Hyper-K and will be a strong test of neutrino emission models.

Indirect dark matter search.

•Geophysical neutrinos \rightarrow measurement of Earth's density.

R&D

Software

- (Beam &) Near Detectors
- Cavern Construction
- Detector Design
- PMTs
- Others

WCSim

•WCSim is a flexibile Geant4-based simulation of a water-Cherenkov detector with top and side photo-multiplier tubes.

Developed by Duke University:

https://wiki.bnl.gov/dusel/index.php/WCSim

Implemented Hyper-Kamiokande "egg-shape" geometry (WCSim default: cylinder shape).

WCSim

•WCSim is a flexibile Geant4-based simulation of a water-Cherenkov detector with top and side photo-multiplier tubes.

Developed by Duke University:

https://wiki.bnl.gov/dusel/index.php/WCSim

Implemented Hyper-Kamiokande "egg-shape" geometry (WCSim default: cylinder shape).

Ongoing work to develop software and more in general computing model for Hyper-K to be used in future physics studies.

(Beam &) Near Detectors

Beam for Tokai-2-Hyper-Kamiokande

Next upgrade (intermediate plan) towards a 750kW operation.
See T. Sekigushi's talk for details on the upgrade.
It will concern:

- > Upgrade plan for J-PARC accelerators.
- > Upgrade plan for the neutrino beam-line to accept a 750MW beam.

- INGRID, on-axis, for neutrino beam direction.
- > ND280, off-axis, for spectrum measurement.
- Ongoing discussion on ND280 possible upgrade for Hyper-Kamiokande (T2HK).

 Predicted number of events error reduction due to ND280:

Near Detector(s)

New Near Detector(s) current under-investigation. Several options. Reduce the current systematic errors at Hyper-Kamiokande using:

- > ND beam spectrum similar to HK spectrum
- > same WC detector as Hyper-K
- > $v_{\rm p}$ xsection measurement, good $v_{\rm e}$ π^0 separation,... Energy spectrometer
- > energy spectrometer

Poster #20, M. Hartz, M. Wilking 18

Cavern Construction

HK Technical Design Document

Candidate Site: Tochibora Mine

Located under "Nijugo-yama" (Mt. 25), ~8km south from Super-K.
Identical baseline (295km) and off-axis angle (2.5°) to T2K.
Overburden ~650m (~1755 m.w.e.).

•The candidate site vicinity was used for mining.

 Historically many surveys have been done in wide area and at several levels/depths, ex. mapping the location of faults.

Many existing tunnels and shafts already escavated.

Geological Survey

•The rock mass characterization has been done by mapping the existing tunnels and geological logging of rock core samples.

Rock Mass Characterization

•From the survey results, rock mass characteristics are classified into 6 categories:

•A, B, CH, CM, CL and D (defined by CRIEPI).

•'A' (blue) is the highest grade rock and 'D' (red) is lowest.

Based on these results, HK tank location decided.

(CRIEPI: The Central Research Institute of Electric Power Industry)

HK tank location

•For both caverns for the tank locations, 90% of bedrock is CH or higher grade.

Cavern Stability

•Based on the survey results (rock mass characteristics and initial stresses), the structural stability of caverns was studied

- •The excavation-steps were taken into account in the studies, including the cavern supporting material.
- •For all rock mass classes (B, CH, CM), HK caverns can be constructed by existing excavation/support techniques.

Excavation Schedule

	1st year	2nd year	3rd year	4th year	5th year
 New and additional excavation sections Temporary facilities of tunnel entrance Tunnels 			structions	Final shotcrete	
2. Approach tunnel Tunnels Muck transport shaft Muck pit				Excavation	Final shotcrete
3. Belt-conveyor Tunnel					
4. Water purification room					
5. Tank cavern	avern ex	cavation			

Cavern construction period: ~5 years
Transport / approach tunnels: ~3 years
Excavation of caverns: ~3 years

Geological Survey at Mozumi Mine

- •Geological survey at the Mozumi mine, already used for Super-K, recently started.
- •It should allow to have deeper caverns (> 700m overburden).
- •First rock mass characterization has been done: rock quality at Mozumi-site is comparable with Tochibora-site
- More tests under way to complete the geological survey.

Detector Design

Hyper-K Tanks

Two water tanks: 54m(H) x 48m(W) x 250m(L) / tank

Water tanks are segmented into 10 compartments

- > 5 compartments / tank
- Each compartment optically separated and consists of Inner Detector (ID) and Outer Detector (OD)

Water Containment System

Photo-sensor Support

Number of photo-sensors:

Inner Detector (ID): ~99,000 of 20" (20% photo coverage)

>Outer Detector (OD): ~25,000 of 8" (identical coverage to SK)

Stainless-steel supporting structure holds photo-sensors

Inner PMT (20")

Designing work...

The major part of HK tank has been designed.

Include layout of water pipes, front-end electronics, cables, calibration holes, plug manholes, ... etc.

Tank construction schedule

Tank construction: ~2 years
Lining: 1+ years, PMT installation: ~1 year

Hyper-K photo-sensor working group

See F. Retiere's talk for details on types of HK photosensors

8" HPD Testing

Pre-test performed before installation in a 200ton tank.

Confirmed that the basic performance was good >P/V: ~4, TTS: ~1ns, Dark rate: comparable to 20" PMTs, ...

Tests in a Water Cherenkov Detector

•EGADS detector : a 200 ton scale model of Super-K

>To demonstrate the safety and effectiveness of "SK + Gadolinium"

>240 inward-facing photodetectors

>Electronics : ATMs (used in SK-1,2,3), to be upgraded to QBEEs (SK4)

•Eight 8" HPDs and five 20" high-QE PMTs were mounted

>Other 227 photodetectors are R3600, and can be used as references for the new photodetector evaluation

Photodector Installation in EGADS

All 240 photodetectors were installed in July-August

HPD with supporting frame

Water-proof cable connection

Cable connection in the tank

Testing in EGADS: Multi p.e.s peaks by HPDs

•EGADS is in the commissioning phase

Initial tests with new photosensors started.

 Multi photoelectron peaks are clearly visible.

About 30% σ at 1 p.e. peak

Future Tests

Hamamatsu Photonics K.K. is making prototypes of

New 20" PMT (Box&Line dynode)

>20" HPD

Planning to start tests in this year

Future: continue tests at different facilities:

EGADS

>1kton WC prototype (construction 2016-17)

>Other facilities (KEK. Kashiwa. TRIUMF....)

Other R&D

Water systemReadout electronicsCalibration systemDAQ

 Progress within the international working group

Schedule & Summary

Overall Project Schedule

Overall Hyper-K construction: ~7 years

The Hyper-Kamiokande Project

Three International Open Meetings (2012-2013) so far.
Formed international working groups.

August 21-23, 2012 http://indico.ipmu.jp/indico/conferenceDisplay.py?confld=7

January 14-15, 2013 http://indico.ipmu.jp/indico/conferenceDisplay.py?confld=10

June 21-22, 2013 http://indico.ipmu.jp/indico/conferenceDisplay.py?confId=23

Next meeting: 27-28 January 2014, Kavli, IPMU.

First EU Open Meeting 18 December 2013, London http://indico.cern.ch/e/HKEUOpenMeeting

Summary

•Hyper-K covers wide range of physics:

>Neutrino oscillation with beam-v & atmospheric-v

→Main goal: CP violation

Nucleon decay search and astrophysical neutrinos

•R&D started in all areas and progressing:

- Software
- (Beam &) Near Detectors
- Cavern Construction (technical design document ready)
- Detector Design
- PMTs
- Others (electronics, DAQ, water system, calibration, etc.)

•Japan HEP community: HK at highest priority.

Strongly growing international community.

•Next Hyper-K Open Meeting: January 27-28, Kavli, IPMU. 41

Backup Slides

$$\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e} \operatorname{Probability}_{g_{d_{1}} \rightarrow v_{e}} \operatorname{Probability}_{g_{d_{2}} \rightarrow w_{e}} = \underbrace{\operatorname{Probability}_{g_{d_{2}} \rightarrow w_{e}}}_{g_{d_{2}} \rightarrow w_{e}} \underbrace{\operatorname{Pv}_{e} \rightarrow v_{e}}_{g_{d_{1}} \rightarrow v_{e}} \underbrace{\operatorname{Pv}_{e} \rightarrow v_{e}} \underbrace{\operatorname{Pv}_{d_{1}} \rightarrow v_{e}} \underbrace{\operatorname{Pv}_{d_{1}} \rightarrow v_{d_{1}} \rightarrow v_{$$

Difference $P(v_{\mu} \rightarrow v_{e})$ and $P(\overline{v_{\mu}} \rightarrow \overline{v_{e}})$ as large as ~±25% at nominal (δ =0)

Simulated $v_{_{\!\!\!\!\!e}}$ Candidates after Selection

Full simulation of v beam, detector response and reconstruction
 PMT Coverage: ~20%

•~2000 ~ 3600 events in \overline{v} and v beams, respectively •Major backgrounds: beam $v_{e}^{\prime}/v_{e}^{\prime}$ and NC- π^{0}

Effect of δ

•Number + shape sensitive to all values of δ

Expected Sensitivity to CP Violation

Fractional region of $\delta(\%)$ for which the CPV (sin $\delta \neq 0$) significance is > 3σ

Atmospheric Neutrinos

 $v_e^{}$ appearance and $v_{\mu}^{}$ distortion are expected due to the MSW effect in the Earth's matter:

- Mass hierarchy: asymmetry betwe neutrinos and antineutrinos
- Octant of oscillation: appearance (and $v_{\mu} \rightarrow v_{\mu}$ disappearance) interpl
- CP phase δ (and θ_{13}):magnitude or resonance effect.

 $\mathbf{\Phi}(\mathbf{x})$

 $P_2 = P(v_e \rightarrow v_{u,\tau})$

$$\frac{\Phi(\mathbf{v}_{e})}{\Phi_{0}(\mathbf{v}_{e})} - 1 \sim P_{2}(r\cos^{2}\theta_{23} - 1)$$
Solar Term
$$-r\sin\tilde{\theta}_{13}\cos^{2}\tilde{\theta}_{13}\sin 2\theta_{23}(\cos\delta R_{2} - \sin\delta)_{2})$$
Interference
$$+2\sin^{2}\tilde{\theta}_{13}(r\sin^{2}\theta_{23} - 1)$$
Matter Effect

 R_2 and I_2 are the oscillation amplitudes for CP even and odd ter48

Through matter effect (MSW), we study:

- \bullet Mass Hierarchy: asymmetry between ν and ν
- Octant of θ_{23} : v_{e} appearance and v_{u} disappearance interplay
- δ_{CP} (and θ_{13}): magnitude of resonance effect

Mass Hierarchy Sensitivity

Sensitivity to $\delta_{_{CP}}$ and $\theta_{_{13}}$ (No Reactor Constraint, NH)

Sensitivity to δ_{CP} and θ_{13} (No Reactor Constraint, NH)

Atmospheric Neutrino Sensitivity Summary

Objective		Normal	Inverted	Comment
Hierarchy	2σ	$\sin^2 2\theta_{_{23}} > 0.96$	$\sin^2 2\theta_{_{23}} > 0.96$	5 years
	3σ	$\sin^2 \theta_{_{23}} > 0.4$	$\sin^2 \theta_{_{23}} > 0.4$	10 years
Octant	2σ	$\sin^2 2\theta_{_{23}} > 0.997$	$\sin^2 2\theta_{_{23}} > 0.99$	5 years
	3σ	$\sin^2 2\theta_{_{23}} > 0.99$	$\sin^2 2\theta_{_{23}} > 0.97$	5 years

Nucleon Decays

•Only direct probe of Grand Unified Theories

•Many GUT models predict decays of protons and bound neutrons with $\tau = O(10^{34-35})$ years.

Two modes favoured by many models:

Other modes are also important.

Experimental Limits

Most stringent limits from Super-K for many decay modes.

•No signal evidence has been found \rightarrow give constraints on models. •After 15y Super-K running (220kton years):

 $\tau(p \rightarrow e^+\pi^0) > 1.3 \times 10^{34} \text{ y}$ $\tau(p \rightarrow vk^+) > 4.0 \times 10^{33} \text{ y}$ @90%CL •Order of magnitude necessary to be significant.