Sterile neutrino searches using accelerators

Takasumi Maruyama (KEK)

Thank you for useful information / discussions;

- Alan Bross (for nuSTORM)
- Bill Louis (for OscSNS)
- Sam Zeller (for microBooNE)

A fundamental questions in flavor physics

- How many generations exists?
 - Only 3 active (weak interactive) neutrinos existed below Mz/2.

 No more elementary fermion in three generations?

$$\binom{u_L}{d_L}$$
, $u_{R_i} d_R$, …

$$\binom{\nu_{e_L}}{e_L}$$
, e_R , ...

Sterile neutrinos

- Sterile neutrinos could give an insight for the questions beyond the standard model;
 - (E.g.; PLB 631, 151 (2005))
 - No strong, electro-magnetic, weak interactions
 - Observed by only neutrino oscillations (also indicated by some experiments)
 - Could be ν_{R} (even see-saw partner) or new particle
 - Beyond PMNS matrix
- Sterile neutrino can be one of the Dark Matter candidate.

Neutrino oscillations with $\Delta m^2 \sim 1 eV^2$ region

 $\sum_{j=1,3} U_{ej}^* U_{\mu j} = -U_{e4}^* U_{\mu 4}$

Small mixiture with active v's U_{e4} , $U_{\mu4} \sim 0.1 U_{s4} \sim 1 m_4 \sim 1 eV >> m_{12,3}$

$$\begin{split} P_{e\mu} &= -4\sum_{i=1,3} (U_{e\,4}^* U_{\mu 4} U_{ei} U_{\mu i}^*) \sin^2 \frac{(m_4^2 - m_i^2)L}{4E_v} \sim 4 \left| U_{e\,4} \right|^2 \left| U_{\mu 4} \right|^2 \sin^2 \frac{\Delta m_4^2}{4} \frac{L}{E} \\ P_{es} &= -4\sum_{i=1,3} (U_{e\,4}^* U_{s\,4} U_{ei} U_{si}^*) \sin^2 \frac{(m_4^2 - m_i^2)L}{4E_v} \sim 4 \left| U_{e\,4} \right|^2 \left| U_{s\,4} \right|^2 \sin^2 \frac{\Delta m_4^2}{4} \frac{L}{E} \end{split}$$

$$P(\nu_{\mu} \rightarrow \nu_{e}) = sin^{2} 2\Theta \cdot sin^{2} (\frac{1.27 \cdot \Delta m^{2} \cdot L}{E_{\nu}})$$

Approximately, the oscillation is expressed by 2 flavor equation.

Status of the sterile neutrino search

• Anomalies, which cannot be explained by standard neutrino oscillations for 15 years are shown;

Experiments	Neutrino source	signal	significance
LSND	μ Decay-At-Rest	$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$	3.8σ
MiniBooNE	π Decay-In-Flight	$\nu_{\mu} \rightarrow \nu_{e}$	3.4σ
		$\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$	2.8σ
		combined	3.8σ
Ga (calibration)	e capture	$v_e \rightarrow v_x$	2.7σ
Reactors	Beta decay	$\overline{v_e} \rightarrow \overline{v_x}$	3.0σ

- Excess or deficit does really exist?
- The new oscillation between active and inactive (sterile) neutrinos?

- LSND and MiniBooNE saw the excess.
- 3 generation model cannot explain oscillation with $\Delta m^2 > 1.0 \text{eV}^2$ ($|m_3^2 - m_2^2| \sim 2.3 \times 10^{-3} \text{ eV}^2$, $m_2^2 - m_1^2 \sim 7.5 \times 10^{-5} \text{ eV}^2$)
- Z measurements conclude 3 active v \rightarrow sterile

Sterile neutrino searches

- To prove or refute the existence of sterile neutrinos with various modes are important.
 - μ Decay-At-Rest source ; J-PARC P56 @MLF (proposed) and OscSNS (white paper was submitted)
 - Better pulsed beam than LSND $(\mu^+ \rightarrow e^+ + v_e + \overline{v_{\mu}}; \overline{v_{\mu}} \rightarrow \overline{v_e})$
 - Better liquid scinti. detector than KARMEN / LSND (PID / Gd loaded)
 - LAr + conventional horn focused beam; ICARUS, MicroBooNE (on-going, will start) ($\pi^+ \rightarrow \mu^+ + \nu_{\mu}$; $\nu_{\mu} \rightarrow \nu_e$ / reversed horn polarity)
 - Better detector (BKG rejection, e ID, v energy reconstruction) than MiniBooNE → reduced #BKG and systematics on BKG
 - $v_{\mu} \rightarrow v_{\mu}$ disappearance; search for new disappearance mode
 - MINOS+ (on-going)
 - New type of beam + Fe+scintillator detector; nuSTORM
 - Using neutrinos from STORed Muons. ($\mu^+ \rightarrow e^+ + v_e^- + \overline{v_{\mu}}$); stage I (from FNAL PAC)
 - Good sensitivity with golden channel; $v_e \rightarrow v_{\mu}$

Picking up typical experiments. Not covering all (sorry!)

Search mode summary

Experiments	source	$v_e \rightarrow v_x$	$ \begin{array}{c} \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e} \\ (\nu_{e} \rightarrow \nu_{\mu}) \end{array} $	$\nu_{\mu} \rightarrow \nu_{x}$	NC
J-PARC P56 (@MLF)	μDAR	0	0		0
OscSNS	μDAR	0	\bigcirc	0	0
ICARUS	πDIF		$\bigcirc (v_{\mu} \rightarrow v_{e})$		
MicroBooNE	πDIF		$\bigcirc (\nu_{\mu} \rightarrow \nu_{e})$		
MINOS+	πDIF			\bigcirc	
nuSTORM	μDIF	0	$\bigcirc (v_e \rightarrow v_{\mu})$	0	0
Reactors		\bigcirc			
Radio-active sources		0			

Picking up typical experiments. Not covering all (sorry!)

nuSTORM (neutrinos from STORed Muons)

A low-energy muon storage (P_{μ} =3.8 GeV/c) ring based on existing technology to:

- Address the large Δm^2 neutrino oscillations
- Provide beams for precision v_e and v_μ cross section measurements
- Provide an accelerator technology test bed (ν-Factory & μ-Collider)
- Provide a neutrino Detector Test Facility
 - Proposal: arXiv:<u>1308.6822</u>
 - Project Definition Report: arXiv:<u>1309.1389</u>

Technologically limited Schedule: 5-7 years

Sterile v search sensitivity

- Performance for an exposure of 10²¹ proton on target (120 GeV) from Fermilab Main Injector for sterile neutrino appearance
 - 2 X 10¹⁸ useful muon decays
 - Can confirm or rule out LSND/MiniBooNE region at 10σ

5 and 10 σ contours for a Boosted Decision Tree analysis. The 99% confidence level contours from a global fit to all experiments are also shown (from Kopp *et al.* JHEP 1305, 050 (2013).)

Conventional beam + LAr

- Topics are covered by previous session's speakers.
- Clear electron, π⁰
 and single γ PID can
 be performed.

Figure 1. Experimental pictures of the first of the two events with a clear electron signature found in the additional sample of 904 neutrino interactions. The evolution of the actual dE/dx from a single track to an e.m. shower for the electron shower is shown along the individual wires. The event has a total energy of -27 GeV and an electron of 6.3 ± 1.5 GeV with a transverse momentum of 3.5 ± 0.9 GeV/c.

MicroBooNE

- 170 ton (total) Liquid Argon TPC will be largest LAr TPC in the U.S.
- important step towards large scale LAr TPCs for long-baseline v physics

• physics goals:

- address MiniBooNE low energy excess
- measure v cross sections on argon

• R&D goals:

- argon fill without evacuation
- cold front-end electronics
- long drift (2.5m)
- near surface operation
- reconstruction development (e/ γ)
- MicroBooNE just entered our last 6 months of project construction
- experiment will begin data-taking in the Fermilab Booster Neutrino beam in 2014!

J-PARC **P56** Sterile v search @MLF

Neutrino Beams

(to Kamioka)

M. Harada et al, arXiv:1310.1437 [physics.ins-det]

J-PARC Facility (KEK/JAEA)

South to North

 540nsec	
 540nsec	

80 ns

25Hz 300kW now & will be 1MW

Hadron hall

Materials and Life Experimental Facility

181MeV Linac

400MeV

3 GeV RCS

30GeV MR

Bird's eye photo in January of 2008

Neutrino production and detector site (3F)

Neutrinos from only μ^+ decay at rest (MLF)

- Neutrinos from only μ⁺ decays are used. (μ⁺ has long lifetime). (top)
- Energy spectrum of $\mu^+ \rightarrow e^+ \overline{\nu_{\mu}} \nu_e$ decay is well known (bottom)
 - Useful to examine the excess of $\overline{\nu_e}$.
 - $-\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ oscillation is searched.
- π⁻ → μ⁻ decay chain is highly suppressed (10⁻³ compared to μ⁺)

 Proton energy of J-PARC is 3GeV, thus π⁺/p ratio is higher than LSND / KARMEN (0.8GeV) by 5-10 times

Detector; Liquid scintillator

- Coincidence between positron and neutron signal (v_e + p → e⁺ + n; Inverse Beta Decay; IBD).
- Neutrons are captured by Gd, and emit gammas (totalE = 8MeV, lifetime; a few 10 μs.)

Energy distribution of events (L=17m)

- Top plot;
 - 1MW x 4 years
 - 4000h / year
 - 50 tons fiducial
 - ~50% detection ϵ
- a definite
 conclusion above
 ~1eV² is obtained
- Bottom plot;
 - If no clear result in step1, then we go to step2

Example
 configuration for
 future step2 is to
 use 1kt detector
 with 60 m baseline

OscSNS (arXiv:1307.7097)

- Use Spallation Neutron Source (SNS) at ORNL
- ~1GeV protons on Hg target (1.4MW)
- Free source of neutrinos
- Well understood flux of neutrinos

Summary

- Sterile neutrino search is in a new era to check the consistencies;
 - With various search modes;

•
$$\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$$
, $\nu_{\mu} \rightarrow \nu_{e}$, $\nu_{e} \rightarrow \nu_{\mu}$

- ν_{μ} disappearance
- $\overline{\nu_{e}}$ or ν_{e} disappearance
- NC
- With different techniques;
 - Intense pulsed beam (μ DAR) + LS
 - Horn focused beam (π DIF) + LAr (or Fe + scintillator)
 - New type of beam (Muon strage; μDIF) + Fe/scintillator
- Exciting next decade is expected.
 - To confirm or refute the results of LSND/MiniBooNE at first
 - All results from experiments above are consistent?

backup