

Review on the θ_{13} measurement in reactor neutrino experiments

Junpei Maeda Tokyo Metropolitan University

NNN13

(International Workshop on Next generation Nucleon Decay and Neutrino Detectors) 11-13 November 2013, Kavli IPMU

Contents

- General introduction to reactor θ_{13} measurements
 - Neutrino Oscillation and reactor neutrinos
 - Concept of reactor neutrino experiments
 - Detection principle
 - Main backgrounds
- Experimental setup and results of ongoing experiments
 - Double Chooz
 - Daya Bay
 - RENO

• Summary

Introduction to reactor θ_{13} measurements

Neutrino Oscillation

Neutrino oscillation occurs as a consequence of non-zero mass and mixing of mass eigenstates and flavor eigenstates as:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}$$

 θ_{23} : P($\nu_{\mu} \rightarrow \nu_{\mu}$) by Atoms. v and v beam θ_{13} : P($\nu_e \rightarrow \nu_e$) by Reactor ν $\theta_{13} \& \delta$: P($\nu_{\mu} \rightarrow \nu_{e}$) by ν beam

(*) $c_{ij} = cos\theta_{ij}, \ s_{ij} = sin\theta_{ij}$

Reactor and solar v

Neutrino oscillation parameters:

- three mixing angles: θ_{12} , θ_{23} , θ_{13}
- two mass difference scales: Δm^2_{12} , Δm^2_{23}
- one phase $\delta \rightarrow CP$ violation in v-sector

Neutrino oscillation in two flavor scheme:

$$P(v_{\alpha} \rightarrow v_{\alpha}) = 1 - \sin^2 2\theta \sin^2 \left(\frac{1.27 \times \Delta m^2 \text{ [eV^2]} \times L \text{ [m]}}{E \text{ [MeV]}}\right)$$

 θ_{13} is the gateway to leptonic CP violation δ .

Why reactors?

- Electron antineutrinos emitted through decays of fission products of ²³⁵U, ²³⁸U, ²³⁹Pu, and ²⁴¹Pu.
 - ~6 $\overline{\nu}_e s/fission$, ~200 MeV/fission
 - \rightarrow 2x10²⁰ \overline{v}_{e} /s @ 1GW_{th}
- Reactors are powerful and "free" sources of low-energy (isotropic) neutrinos.

Th. A. Mueller *et al*., Phys. Rev. C83 (2011) 054615 P. Huber, Phys. Rev. C84 (2011) 024617

Features of reactor neutrino experiment to measure θ_{13} :

• Direct measurement of θ_{13} with a $\overline{\nu}_e$ disappearance at ~1km baseline.

$$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) + O(10^{-3})$$

 \bullet Reactor is a free and rich $\overline{\nu}_e$ source. Flux expectation within 2% error.

Features of reactor neutrino experiment to measure θ_{13} :

• Direct measurement of θ_{13} with a $\overline{\nu}_e$ disappearance at ~1km baseline.

$$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) + O(10^{-3})$$

- \bullet Reactor is a free and rich $\overline{\nu}_e$ source. Flux expectation within 2% error.
- The reactor neutrinos are detected by a well-designed detector.
- Rate is predictable from the distance, target mass, and IBD cross sections.

Features of reactor neutrino experiment to measure θ_{13} :

• Direct measurement of θ_{13} with a \overline{v}_e disappearance at ~1km baseline.

$$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) + O(10^{-3})$$

- \bullet Reactor is a free and rich $\overline{\nu}_{e}$ source. Flux expectation within 2% error.
- The reactor neutrinos are detected by a well-designed detector.
- Rate is predictable from the distance, target mass, and IBD cross sections.
- Systematic uncertainties are further reduced by two identical detectors.

Features of reactor neutrino experiment to measure θ_{13} :

Detection principle of reactor neutrinos

Inverse Beta Decay (IBD) reaction:

$$\bar{\nu}_e + p \to e^+ + n$$

(*) Energy threshold = 1.8 MeV
$$\sigma$$
~10⁻⁴³ cm²

Delayed coincidence technique:

(1) Prompt signal from e⁺ ionization and annihilation (1~8 MeV).

(2) Delayed signal from neutron capture on nucleon (~8 MeV for Gd).

(3) Time coincidence of those(τ~30µsec for Gd).

In the IBD process, prompt energy is related to neutrino energy: $E_{vis} = E(kin)_{e^+} + 2m_e \simeq E_{\bar{\nu}_e} - (M_n - M_p) + m_e \simeq E_{\bar{\nu}_e} - 0.782 \text{ MeV}$ \rightarrow Spectral shape of the prompt signal gives us further information.

Main backgrounds

Accidental bkg. Accidental coincidences

Prompt: gammas from radioactivity materials, rock... **Delayed:** neutrons from cosmic-muons

cosmic-µ

Correlated bkg.

muon-induced fast-neutrons and stopping muons

Prompt: recoil proton from neutron scattering or muon track **Delayed:** neutron capture or Michel-electrons

cosmic-µ

Cosmogenic bkg. muon-induced spallation βn emitters (⁹Li etc.)

Prompt: electron **Delayed:** neutron capture

cosmic-µ,

Ongoing reactor-A13 experiments

Double Chooz

Experimental layout

Two reactor cores 4.27 GW_{th} for each core

<L> ~400 m ~120 m.w.e. 450 v/day Under construction

<L> ~1050 m ~300 m.w.e. 65 v/dayOperating

Far only operation: Measure the mixing angle θ_{13} by comparing observed neutrino candidates at the Far detector with prediction.

Double Chooz detector

IBD Candidates

Gd analysis (Live time=227.93 days, Candidates=8249)

H analysis (Live time=240.1 days, Candidates=36284)

Rate + Shape results

Gd analysis, June 2012

Phys. Rev. D 86 (2012)

H analysis, December 2012

The combined result of Gd & H: $sin^22\theta_{13}=0.109\pm0.035$ (preliminary)

Reactor off background measurements

Phys. Rev. D 87 (2013) 011102(R)

- 7.5 days of data with both reactors off
 → pure background data
- Unique Double Chooz capability
- Same selection than for Gd analysis
- Rate consistent with predictions
 - Observed: 1.0±0.4 [/day]
 - Predicted: 2.0±0.6 [/day]
- New constraint for oscillation fit

Reactor rate modulation (RRM) analysis

- Rate-only background-independent analysis
 - Observed vs expected $\overline{\nu}_{\rm e}$ rate using different reactor power
 - Fit provides sin²2θ₁₃ and the total background rate
- No background model assumed
- includes the reactors-off background measurement

Gd+H combined result: sin²2θ₁₃=0.097±0.035 (preliminary) in agreement (~same precision) with R+S results

Prospects from Double Chooz

- CHERT COL
- Currently finishing new improved analysis including...
 - Statistics (> 2x)
 - Optimized selection to enhance S/B
 - Reduced systematics

• Near + Far detector analysis (mid. 2014)

- Reactor flux uncertainty almost cancels
- Projected final precision: ~10%

Daya Bay

Experimental layout

- 8 detectors in 2 near and 1 far site
 - results shown here use data collected with 6/8 detectors

Tran

EH3 (Far Hall)

- at time of analysis -

The Daya Bay detector

Daya Bay status

Two detector comparison [1202.6181]

- 90 days of data, Daya Bay near only
- NIM A 685 (2012) 78-97

First oscillation analysis [1203.1669]

- 55 days of data, 6 ADs near+far
- PRL 108 (2012) 171803

Improved oscillation analysis [1210.6327]

- 139 days of data, 6 ADs near+far
- CP C 37 (2013) 011001

Spectral analysis [1310.6732]

- 217 days complete 6 AD period
- 55 % more statistics than CPC result

The newest result [arXiv:1310.6732]

The result strongly confirms of oscillation-interpretation of observed $\nu_{\rm e}$ deficit.

The newest result [arXiv:1310.6732]

The result strongly confirms of oscillation-interpretation of observed $\nu_{\rm e}$ deficit.

Prospects from Daya Bay

- increased the precision in oscillation parameters
 - constrains non-standard oscillation models
 - improves the reach of next-generation experiments
 - Absolute reactor neutrino spectrum flux and shape measurement
 - Probe reactor models and explore reactor antineutrino anomaly

RENO

Experimental layout

Data taking & analysis status

- Data taking began on Aug. 1, 2011 with both near and far detectors.
- **A** (220 days): first θ_{13} result $sin^2 2\theta_{13} = 0.113 \pm 0.013(stat) \pm 0.019(syst)$ PRL 108 (2012) 191802
- **B** (403 days): improved θ_{13} result $sin^2 2\theta_{13} = 0.100 \pm 0.010(stat) \pm 0.015(syst)$ NuTel2013
- B' (403 days): updated result $sin^{2}2\theta_{13}=0.100\pm0.010(stat)\pm0.012(syst)$ WIN2013
- **C** (~700 days): rate+shape analysis in progress
 - Absolute reactor neutrino flux measurement in progress
 - [reactor anomaly & sterile neutrinos]

improved ⁹Li/⁸He background estimation

- ⁹Li/⁸He background estimation has been improved at WIN2013.
 - fit range: 8 MeV → 6.5 MeV
 - increased statistics of BG sample

Fitted shape from bkg. sample matches well within the ⁹Li/⁸He shape contained in IBD sample.

Far

3.61±0.11(stat.)±0.59(sys.)/day →3.55±0.11(stat.)±0.44(sys.)/day

<u>Near</u>

13.73±0.22(stat.)±2.12(sys.)/day →13.97±0.22(stat.)±1.52(sys.)/day

Newest result

sin²20₁₃=0.100±0.010(stat.)±0.012(syst.)

For more details, see H. Seo's talk @ WIN2013

Prospects from RENO

- already collected ~700 live days of reactor neutrino data
 - new θ_{13} result with improved energy calibration and bkg. estimation
 - direct measurement of Δm^2_{31}
 - precise measurement of reactor neutrino flux and spectrum

Summary

- Double Chooz [EPS-HEP2013]
 - Rate+Shape (Gd+H): sin²20₁₃=0.109±0.035
 - RRM (Gd+H): sin²20₁₃=0.097±0.035
- Daya Bay [NuFact2013]
 - Rate+Shape (Gd): sin²20₁₃=0.090^{+0.009}-0.008
- RENO [WIN2013]
 - Rate (Gd): sin²20₁₃=0.100±0.016
- Three experiments are in good agreement.
- Reactor experiments have measured θ_{13} to a precision better than other mixing angles.
- Continuation of current measurements will help CP violation measurements in future accelerator experiments.

backup slides
Comparison between three experiments

The detector setup and analysis strategy is similar between three experiments.

Experiment	Double Chooz	Daya Bay	RENO
# of reactors (total power)	2 (9.4 GW)	3 (17.4 GW)	6 (16.8 GW)
Reactor configuration	2	3	6 inline
Detector configuration	1 near + 1 far	2 near + 1 far	1 near + 1 far
Baseline [m]	(400, 1050)	(364, 480, 1912)	(290, 1380)
Overburden [m.w.e.]	(120, 300)	(280, 300, 880)	(120, 450)
Target mass [ton]	(8.3, 8.3)	(40, 40, 80)	(16, 16)
Detector geometry	Cylindrical d	etector (Gd-LS, γ-ca	atcher, buffer)
Outer shield	0.5m of LS & 0.15 m of steel	2.5m water	1.5m of water
Muon veto system	LS & Scinti-Strip	Water Cerenkov & RPC	Water Cerenkov
Designed sensitivity (90% C.L.)	~0.03	~0.01	~0.02

Complementarity with accelerator experiments

Reactor anomaly

- \bullet Reevaluation of reactor $\overline{\nu}_e$ spectra and flux
 - Th. A. Mueller et al., Phys. Rev. C83 (2011) 054615
- Reanalysis of past reactor experiments
 - G. Mention et al., Phys. Rev. D83 (2011) 073006
 - Reactor anomaly 3σ (new physics??)
- Revisited with known θ_{13}
 - C. Zhang et al., arXiv:1303.0900 [nucl-ex]
 - New world average ~1.4 σ lower than unity.

TPC-Paris2012 by Th. Lasserre

Results of three experiments

 $\sin^2 2\theta_{13} = 0.109 \pm 0.035$ $\sin^2 2\theta_{13} = 0.090^{+0.009}_{-0.008}$

 $\sin^2 2\theta_{13} = 0.100 \pm 0.016$

• θ_{13} has been measured precisely. (<10% precision)

• c.f. θ_{23} error is ~13%.

Comparison between θ_{13} measurements

modified from DayaBay's talk in NuFact 2013

41

Backup slides for Double Chooz

Double Chooz collaboration

Double Chooz Electronics

Calibration

- Light injection in ID and IV:
 - monitor stability of readout (timing & gain) and scintillator
- Radioactive sources:
 - Sources deployed in Z-axis in target and guide tube in GC
 - ¹³⁷Cs, ⁶⁸Ge, ⁶⁰Co, ²⁵²Cf for E-scale and neutron detection efficiency
- Spallation neutrons generated by cosmic-rays

Energy reconstruction

- Charge to PE (I)
 - Gain nonlinearity correction
- Detector nonuniformity correction (II)
 - Response maps of cosmogenic neutron captures on H across volume
- Time instability correction (III)
 - Using cosmogenic neutron captures on Gd peak variation
- Absolute MeV scale (PE/MeV)
 - H capture peak from ²⁵²Cf at center of target

	Gd analysis	H analysis	
Muon veto	$\Delta t > 1 ms$		
Light noise rejection	Q _{max} /Q _{tot} < 0.09 (0.055) & RMS(T _{start}) < 40 ns		
Eprompt	0.7-12.2 MeV		
Edelayed	6.0-12.0 MeV	1.5-3.0 MeV	
ΔΤ	2-100 µ s	10-600 µ s	
Δd		< 0.9 m	
Multiplicity	No additional triggers around signal		
OV veto	No OV hit coincident with prompt		
Showering muon veto	$\Delta t_{\mu} (E_{\mu} > 600 \text{ MeV}) > 0.5 \text{ s}$		

Background estimation

by I. Gil Bottera @ PACT-IFT workshop

Accidentals:

- Stable along data taking period
- Determined by off-time window
 - Gd: 0.261 ± 0.002 evts/day
 - H: 73.5 ± 0.2 evts/day
- Rate and shape: datadriven

Fast-n and stopping µ's:

- Prompt energy extended up to 30 MeV
- Rate: IV-tagged events
 - Gd: 0.67 ± 0.20 evts/day
 - H: 2.5 ± 0.5 evts/day
- Shape: from fit to tagged events

Cosmogenic background:

- ⁹Li rate from Δt between showering muon and prompt event
 - Gd: 1.25 ± 0.54 evts/day
 - H: 2.8 ± 1.2 evts/day
- Energy spectrum from MC (poorly known)

Reactor neutrino flux prediction

by I. Gil Bottera @ PACT-IFT workshop

Summary of background events

	Gd analysis	H analysis
Livetime (days)	227.93	240.1
IBD candidates	8249	36284
Neutrino prediction (no-osc)	8439.6	17690
Cosmogenic isotopes	284.9	680
Correlated Fast-n + SM	152.7	600
Accidentals	59.5	17630
Light noise		80
Total prediction	8936.7	36680

Uncertainties

• Normalisation uncertainties (relative to signal):

	Gd analysis	H analysis
Statistical error	1.1%	1.1%
Reactor antineutrino flux	1.7%	1.7%
Efficiency	1.0%	1.6%
⁹ Li rate	1.4%	1.6%
Correlated Fast-n + SM rate	0.5%	0.6%
Accidental rate	<0.1%	0.2%
Light noise		0.1%
Total	2.7%	3.1%

- Spectrum shape uncertainties:
 - Reactor anti- ν_e spectrum
 - Energy scale
 - Background spectrum (⁹Li and Fast neutron+SM)

Predicted neutrino spectrum

$$N_{i} = \frac{\epsilon N_{p}}{4\pi} \sum_{R} \frac{1}{L_{R}^{2}} \frac{P_{th}^{R}}{\langle E_{f} \rangle_{R}} \left(\frac{\langle \sigma_{f} \rangle_{R}}{\sum_{k} \alpha_{k}^{R} \langle \sigma_{f} \rangle_{k}} \sum_{k} \alpha_{k}^{R} \langle \sigma_{f} \rangle_{k} \right)$$

Bugey4 "anchor": $\langle \sigma_f \rangle_R = \langle \sigma_f \rangle_{\text{Bugey}} + \sum_k (\alpha_k - \alpha_k^{\text{Bugey}}) \langle \sigma_f \rangle_k$ scales predicted $\langle \sigma_f \rangle$ to match $\langle \sigma_f \rangle$ at L=15m, removing sensitivity to $\Delta m^2 \sim 1 \,\text{eV}^2$ oscillations.

 $R = \{ \text{Reactor 1}, \text{Reactor 2} \}$

$$k = \{^{235}U, \,^{238}U, \,^{239}Pu, \,^{241}Pu\}$$

 ϵ = detection efficiency

$$N_p$$
 = number of protons in fiducial volume

- L_R = distance between Rth reactor and far detector
- P_{th}^{R} = thermal power of Rth reactor (time-dependent)
- $\langle E_f \rangle_R$ = mean energy per fission in Rth reactor (time-dependent)
- $\langle \sigma_f \rangle_R$ = mean cross section per fission in Rth reactor (time-dependent)
- α_k^R = fission fraction for kth isotope in Rth reactor (time-dependent)
- $\langle \sigma_f \rangle_k$ = mean cross section per fission of kth isotope
- $\langle \sigma_f \rangle_k^i$ = mean cross section per fission of kth isotope in ith energy bin

χ^2 definition for combined Gd+H fit

$$\begin{split} \chi^2 &= \sum_{i,j}^B (N_i^{\text{obs}} - N_i^{\text{pred}}) M_{ij}^{-1} (N_j^{\text{obs}} - N_j^{\text{pred}}) & \text{Inner product with covariance matrix,} \\ &= \sum_{i,j}^B (N_i^{\text{obs}} - N_i^{\text{pred}}) M_{ij}^{-1} (N_j^{\text{obs}} - N_j^{\text{pred}}) & \text{Mass splitting pull term} \\ &+ \left[\frac{(\Delta m^2 - \Delta m_{\text{MINOS}}^2)^2}{\sigma_{\text{MINOS}}^2} & \text{Mass splitting pull term} \\ &+ \left[\alpha_{\text{Li}}^{\text{Gd}} - 1 - \alpha_{\text{fn}}^{\text{Gd}} - 1 - \alpha_{\text{E}}^{\text{Gd}} - 1 - \alpha_{\text{Li}}^{\text{H}} - 1 - \alpha_{\text{fn}}^{\text{H}} - 1 - \alpha_{\text{E}}^{\text{H}} - 1 \right] \\ &\times \begin{bmatrix} (\sigma_{\text{Li}}^{\text{Gd}})^2 & 0 & 0 & \rho_{\text{Li}} \sigma_{\text{Li}}^{\text{Gd}} \sigma_{\text{Li}}^{\text{H}} & 0 & 0 \\ 0 & (\sigma_{\text{fn}}^{\text{Gd}})^2 & 0 & 0 & \rho_{\text{E}} \sigma_{\text{E}}^{\text{Gd}} \sigma_{\text{E}}^{\text{H}} \\ \rho_{\text{Li}} \sigma_{\text{Li}}^{\text{Li}} \sigma_{\text{Gd}}^{\text{Gd}} & 0 & 0 & (\sigma_{\text{Li}}^{\text{H}})^2 & 0 \\ 0 & \rho_{\text{E}} \sigma_{\text{fn}}^{\text{H}} \sigma_{\text{fd}}^{\text{Gd}} & 0 & 0 & (\sigma_{\text{fn}}^{\text{H}})^2 \\ 0 & 0 & \rho_{\text{E}} \sigma_{\text{E}}^{\text{H}} \sigma_{\text{E}}^{\text{Gd}} & 0 & 0 & (\sigma_{\text{Fl}}^{\text{H}})^2 \\ 0 & 0 & \rho_{\text{E}} \sigma_{\text{E}}^{\text{H}} \sigma_{\text{E}}^{\text{Gd}} & 0 & 0 & (\sigma_{\text{Fl}}^{\text{H}})^2 \\ &\times \begin{bmatrix} \alpha_{\text{Li}}^{\text{Gd}} - 1 - \alpha_{\text{fn}}^{\text{Gd}} - 1 - \alpha_{\text{E}}^{\text{H}} - 1 - \alpha_{\text{fn}}^{\text{H}} - 1 - \alpha_{\text{E}}^{\text{H}} - 1 \end{bmatrix}^T \\ & \text{background rates and energy scale} \\ &+ \begin{bmatrix} \alpha_{\text{Li}}^{\text{Gd}} R_{\text{Li}}^{\text{Gd}} - \alpha_{\text{Gd}}^{\text{Gd}} R_{\text{fn}}^{\text{Gd}} - R_{\text{off}}^{\text{Gd}} \alpha_{\text{Li}}^{\text{Gd}} R_{\text{Li}}^{\text{Gd}, \text{pred}} - R_{\text{off}}^{\text{Gd}} \end{bmatrix} \\ &\times \begin{bmatrix} (\sigma_{\text{off}})^2 & \rho_{\text{off}} \sigma_{\text{off}}^{\text{Gd}} \sigma_{\text{off}}^{\text{Gd}} \end{bmatrix}^{-1} \times \begin{bmatrix} \alpha_{\text{Li}}^{\text{Gd}} R_{\text{Li}}^{\text{Gd}, \text{pred}} + \alpha_{\text{fn}}^{\text{Gd}} R_{\text{fn}}^{\text{Gd}, \text{pred}} - R_{\text{off}}^{\text{Gd}} \end{bmatrix} \\ &\text{Reactor-off rate constraints} \\ \end{array} \right. \end{split}$$

χ^2 definition for individual Gd and H fits

$$\chi^{2}_{\text{Rate+Shape}} = \sum_{i,j}^{B} (N_{i}^{\text{obs}} - N_{i}^{\text{pred}}) M_{ij}^{-1} (N_{j}^{\text{obs}} - N_{j}^{\text{pred}})^{T} + \frac{(\alpha_{\text{Li}} - 1)^{2}}{\sigma_{\text{Li}}^{2}} + \frac{(\alpha_{\text{FNSM}} - 1)^{2}}{\sigma_{\text{FNSM}}^{2}} + \frac{(\alpha_{E} - 1)^{2}}{\sigma_{E}^{2}} + \frac{(\Delta m^{2} - \Delta m_{\text{MINOS}}^{2})^{2}}{\sigma_{\text{MINOS}}^{2}}$$

with covariant matrix:

 $M = M_{\text{stat}} + M_{\text{reactor}} + M_{\text{acc}} + M_{\text{corr LN}} + M_{\text{Li shape}} + M_{\text{FNSM shape}}$

Some results from Double Chooz

backup slides for Daya Bay

The Daya Bay Collaboration:

Asia (21)

Beijing Normal Univ., CGNPG, CIAE, Dongguan Polytechnic, ECUST, IHEP, Nanjing Univ., Nankai Univ., NCEPU, Shandong Univ., Shanghai Jiao Tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Xian Jiaotong Univ., Zhongshan Univ.,

Chinese Univ. of Hong Kong, Univ. of Hong Kong, National Chiao Tung Univ., National Taiwan Univ., National United Univ.

Europe (2)

Charles University, JINR Dubna

North America (17)

Brookhaven Natl Lab, CalTech, Illinois Institute of Technology, Iowa State, Lawrence Berkeley Natl Lab, Princeton, Rensselaer Polytechnic, Siena College, UC Berkeley, UCLA, Univ. of Cincinnati, Univ. of Houston, UIUC, Univ. of Wisconsin, Virginia Tech, William & Mary, Yale

~230 Collaborators

Experimental Layout

TABLE I. Overburden (m.w.e), muon rate R_{μ} (Hz/m²), and average muon energy E_{μ} (GeV) of the three EHs, and the distances (m) to the reactor pairs.

Experiment survey

by K. Lau @ FPCP2013

Negligible reactor flux uncertainty (<0.02%) from precise survey.

Detailed Survey:

- GPS above ground
- Total Station underground
- Final precision: 28mm

Validation:

- Three independent calculations
- Cross-check survey
- Consistent with reactor plant and design plans

Muon tagging system

Dual tagging systems: 2.5 meter thick two-section water shield and RPCs

- Outer layer of water veto (on sides and bottom) is 1m thick, inner layer >1.5m.
 Water extends 2.5m above ADs
 - 288 8" PMTs in each near hall
 - 384 8" PMTs in Far Hall
- 4-layer RPC modules above pool
 - 54 modules in each near hall
 - 81 modules in Far Hall
- Goal efficiency: > 99.5%
 with uncertainty <0.25%
 5/22/2013

Daya Bay RPC modules

- 2m x 2m @ 1 module
- 4 layers of bare RPCs, each with 1 readout plane, inside an Al box
- 2X and 2Y 25-cm wide strips per module
- The spatial resolution is about 8 cm per coordinate.
- 54 modules each in EH1 and EH2, and 81 in EH3.
- The RPCs are triggered by having 3 out of 4 ayers hit per module.
- The muon detection efficiency based on RPCs alone is >95%.

Trigger performance

Trigger thresholds

- AD: >45 PMTs (digital trigger) >0.4 MeV (analog trigger)
- Inner Water Veto: >6 PMTs
- Outer Water Veto: >7 PMTs
- RPC: 3/4 layers in a module

Trigger efficiency

- No measureable inefficiency >0.7 MeV
- Minimum energy expected for prompt antineutrino signal is ~0.9 MeV.

by K. Lau @ FPCP2013

Automated Calibration System

64

Ingredient #2: Non-Linearity Response Model

Model is constrained using monoenergetic gamma lines from various sources and continuous spectrum from ¹²B produced by muon spallation inside the scintillator:

66

67

 $\frac{N_{\rm f}}{N_{\rm n}} = \left(\frac{N_{\rm p,f}}{N_{\rm p,n}}\right) \left(\frac{L_{\rm n}}{L_{\rm f}}\right)^2 \left(\frac{\epsilon_{\rm f}}{\epsilon_{\rm n}}\right) \left[\frac{P_{\rm sur}(E,L_{\rm f})}{P_{\rm sur}(E,L_{\rm n})}\right]$

FPCP 2013

Kwong Lau

Event selection criteria

Selection:

- Reject Flashers
- Prompt Positron: 0.7 MeV < E_p < 12 MeV
- Delayed Neutron: 6.0 MeV < E_d < 12 MeV
- Capture time: 1 μ s < Δ t < 200 μ s
- Muon Veto:

Pool Muon: Reject 0.6ms AD Muon (>20 MeV): Reject 1ms AD Shower Muon (>2.5GeV): Reject 1s

- Multiplicity:

No other signal > 0.7 MeV in $\pm 200 \ \mu s$ of IBD.

Selection driven by uncertainty in relative detector efficiency

Multiplicity cut

• Ensure exactly one prompt-delayed coincidence by K. Lau @ FPCP2013

Uncorrelated background and IBD signals result in ambiguous prompt, delayed signals.

-> Reject all IBD with >2 triggers above 0.7 MeV in -200µs to +200µs. Introduces ~2.5% IBD inefficiency, with negligible uncertainty

Reactor flux expectation

Daya Bay

by K. Lau @ FPCP2013

• Antineutrino flux is estimated for each reactor core.

$$S(E_{\nu}) = \frac{W_{th}}{\sum_{i} (f_i/F)e_i} \sum_{i}^{istopes} (f_i/F)S_i(E_{\nu})$$

Reactor operators provide:

- Thermal power data: W_{th}

- Relative isotope fission fractions: f_i

Energy released per fission: e_i V. Kopekin et al., Phys. Atom. Nucl. 67, 1892 (2004)

Antineutrino spectra per fission: *S_i(E_v)* K. Schreckenbach et al., Phys. Lett. B160, 325 (1985) A. A. Hahn et al., Phys. Lett. B218, 365 (1989) P. Vogel et al., Phys. Rev. C24, 1543 (1981) T. Mueller et al., Phys. Rev. C83, 054615 (2011) P. Huber, Phys. Rev. C84, 024617 (2011)

Flux model has negligible impact on far vs. near oscillation measurement

Doing a Spectral Measurement

With a spectral measurement can measure the mass splitting:

Systematic uncertainties

- Statistic uncertainties contribute 73 % (65%) to total uncertainty in $sin^2 2\theta_{13}$ ($|\Delta m^2_{ee}|$)
- Major systematics:
 - θ_{13} : reactor model, relative+absolute energy, and relative efficiencies
 - $|\Delta m^2_{ee}|$: Relative energy model, relative efficiencies, and backgrounds

Prompt positron spectra

¹³C(a, n)¹⁶O backgrounds

¹³ C (α, n) ¹⁶ O 1	.1% natural abu	ndance ¹³ C	Potential alpha source:	
\rightarrow n + p \longrightarrow r	²³⁸ U, ²³² Th, ²³⁵ U, ²¹⁰ Po:			
$h \rightarrow n + {}^{12}C \longrightarrow$	Each of them are measured in-situ:			
¹³ C (α , n) ¹⁶ O*(6.05 MeV) \rightarrow ¹² C + Y (2)			U&Th: cascading decay of	
\downarrow 160 + Y (3)	Bi(or Rn) – Po – Pb			
¹³ C (α, n) ¹⁶ O*(6.13 MeV)	²¹⁰ Po: spectrum fitting			
└→ ¹⁶ O + e ⁺ +	e ⁻ (4)			
			Combining (a n) cross soction	
Example alpha ²³⁸ U	²³² Th ²³⁵ U	²¹⁰ Po	correlated background rate is	

Example alpha rate in AD1	2000	²⁰² I N	200	210P0	
Bq	0.05	1.2	1.4	10	

determined.

 $B/S (0.006 \pm 0.004)\%$ Near Site: 0.04+-0.02 per day, Far Site: 0.03+-0.02 per day, $B/S (0.04 \pm 0.02)\%$

²⁴¹Am-¹³C neutron backgrounds

Antineutrino Rates vs. Time

For main analysis we simultaneously fit all detectors <u>using reactor model</u>, with the absolute normalization as a free parameter:

Independent Cross-Check

Independent crosscheck with minimal reactor assumptions

Predict far spectra directly from measured near site spectra

→ Minimizes impact of absolute flux and spectra prediction.

Use covariance matrices to account for systematic errors

 \rightarrow Alternate method finds consistent uncertainties for neutrino parameters.

backup slides for RENO

RENO Collaboration

(12 institutions and 40 physicists)

- Chonbuk National University
- Chonnam National University
- Chung-Ang University
- Dongshin University
- Gyeongsang National University
- Kyungpook National University
- Pusan National University
- Sejong University
- Seokyeong University
- Seoul National University
- Seoyeong University
- Sungkyunkwan University

- Total cost : \$10M
- Start of project : 2006
- The first experiment running with both near & far detectors from Aug. 2011

Energy calibration

Energy calibration

Neutron capture by Gd

Detector stability of E-scale

by H. Seo @ WIN2013

IBD candidte's delayed signals (neutron capture by Gd)

Background spectra

Measured spectra of IBD prompt signal

Summary of final data sample

by H. Seo @ WIN2013

Detector	Near	Far	
Selected events	279787	30211	
Total background rate [day ⁻¹]	21.17±1.81	4.80±0.46	
IBD rate after bkg. subtraction [day ⁻¹]	737.00±2.31	70.22±0.64	
DAQ live time [days]	369.03	402.69	
Detection efficiency	62.0±0.014 %	71.4±0.014 %	
Accidental rate [day ⁻¹]	3.61±0.05	0.60±0.03	
9Li/8He rate [day ⁻¹]	13.97±1.54	3.55±0.45	
Fast neutron rate [day ⁻¹]	3.59±0.95	0.65±0.10	

(Prompt energy < 10 MeV)

Expected Reactor Antineutrino Fluxes

- [* P. Huber, Phys. Rev. C84, 024617 (2011)
 - T. Mueller et al., Phys. Rev. C83, 054615 (2011)]
- *E_i* : Energy released per fission
 - [* V. Kopeikin et al., Phys. Atom. Nucl. 67, 1982 (2004)]

Isotopes	James	Kopeikin	
²³⁵ U	201.7±0.6	201.92±0.46	
²³⁸ U	205.0 ± 0.9	205.52 ± 0.96	
²³⁹ Pu	210.0 ± 0.9	209.99 ± 0.60	
²⁴¹ Pu	212.4±1.0	213.60 ± 0.65	

Spectrum of ²⁵²Cf contaminated data

Observed daily IBD rate

Observed vs Expected IBD rate

- A good agreement between observed and expected rates with oscillation hypothesis
- Correct background subtraction