

Neutrino Interactions and Future LBL experiments

H. A. Tanaka (UBC/IPP)

International Workshop Next-Generation Nucleon Decay and Neutrino Detectors Kavli-IPMU, Kashiwa, Japan, 11 Nov 2013

Monday, November 11, 13

Overview

- Some generic comments on *v*-int issues for LBL experiments
 - selective examples to illustrate general issues
- Some thoughts on next-generation neutrino near detectors
 - (a new workshop series?)
 - some other interesting efforts and activities
- Some sociological commentary
 - A pitch
- In the background: physics at the terascale . . .
 - 1 MWatt x 1 MTon = 1 Tera Watt-ton
 - 1 G\$ x 1 kPerson = 1 Tera \$-Person
 - how do we ensure that we get the most out of this?

The Mixed Blessing of large θ_{13}

Oscillation Measurements

 $P(\nu_{\mu} \to \nu_{e}) \sim \frac{1}{2} \sin^{2} 2\theta_{13} \times \sin^{2} \Delta$

$$\Delta \equiv \frac{\Delta m_{31}^2 L}{4E}$$

$$P(\nu_{\mu} \to \nu_{\mu}) \sim 1 - \sin^2 2\theta_{23} \times \sin^2 \Delta$$

- With θ_{13} ~large and non-zero, we are in the era of full "3-flavor mixing"
 - all parameters (and their precision) matter
- Entering an era of precision where 3 flavor mixing effects matter
 - current $\sin^2\theta_{23}$ uncertainty in $v_{\mu} \rightarrow v_e$ appearance
 - $\sin^2\theta_{13}$ in v_{μ} disappearance

N.B. above equations are only for illustration

Oscillation Measurements

$$P(\nu_{\mu} \to \nu_{e}) \sim \frac{1}{2} \sin^{2} 2\theta_{13} \times \sin^{2} \Delta$$

$$P(\nu_{\mu} \to \nu_{e}) \sim \sin^{2} 2\theta_{13} \times \sin^{2} \theta_{23} \frac{\sin^{2}[(1-x)\Delta]}{(1-x)^{2}} \quad (\equiv P_{0})$$

$$-\alpha \sin 2\theta_{13} \times \sin \delta \sin 2\theta_{12} \sin 2\theta_{23} \sin \Delta \frac{\sin(x\Delta)}{x} \frac{\sin[(1-x)\Delta]}{(1-x)} \quad (\equiv P_{1})$$

$$+\alpha \sin 2\theta_{13} \times \cos \delta \sin 2\theta_{12} \sin 2\theta_{23} \cos \Delta \frac{\sin(x\Delta)}{x} \frac{\sin[(1-x)\Delta]}{(1-x)} \quad (\equiv P_{2})$$

$$+\alpha^{2} \times \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2}(x\Delta)}{x^{2}} \qquad (\equiv P_{3})$$

M. Freund, Phys.Rev. D64 (2001) 053003

 $P(\nu_{\mu} \to \nu_{\mu}) \sim 1 - \sin^2 2\theta_{23} \times \sin^2 \Delta$

• With θ_{13} ~large and non-zero, we are in the era of full "3-flavor mixing"

 $\alpha \equiv \frac{\Delta m_{21}}{\Delta m_{31}^2} \sim \frac{1}{30} \quad \Delta \equiv \frac{\Delta m_{31} L}{4E} \quad x \equiv \frac{2\sqrt{2}G_F N_e L}{\Delta m_{31}^2}$

- all parameters (and their precision) matter
- Entering an era of precision where 3 flavor mixing effects matter
 - current $\sin^2\theta_{23}$ uncertainty in $v_{\mu} \rightarrow v_e$ appearance
 - $\sin^2\theta_{13}$ in v_{μ} disappearance

N.B. above equations are only for illustration

Oscillation Measurements

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) \sim & \frac{1}{2} \sin^{2} 2\theta_{13} \times \sin^{2} \Delta \\ P(\nu_{\mu} \rightarrow \nu_{e}) \sim & \sin^{2} 2\theta_{13} \quad \times \sin^{2} \theta_{23} \frac{\sin^{2}[(1-x)\Delta]}{(1-x)^{2}} \quad (\equiv P_{0}) \\ & -\alpha \sin 2\theta_{13} \quad \times \sin \delta \sin 2\theta_{12} \sin 2\theta_{23} \sin \Delta \frac{\sin(x\Delta)}{x} \frac{\sin[(1-x)\Delta]}{(1-x)} \quad (\equiv P_{1}) \\ & +\alpha \sin 2\theta_{13} \quad \times \cos \delta \sin 2\theta_{12} \sin 2\theta_{23} \cos \Delta \frac{\sin(x\Delta)}{x} \frac{\sin[(1-x)\Delta]}{(1-x)} \quad (\equiv P_{2}) \\ & +\alpha^{2} \qquad \times \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2}(x\Delta)}{x^{2}} \qquad (\equiv P_{3}) \end{split}$$

$$M. \text{ Freund, Phys.Rev. D64 (2001) 053003} \quad \alpha \equiv \frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}} \sim \frac{1}{30} \quad \Delta \equiv \frac{\Delta m_{31}^{2}L}{4E} \quad x \equiv \frac{2\sqrt{2}G_{F}N_{e}E}{\Delta m_{31}^{2}} \\ P(\nu_{\mu} \rightarrow \nu_{\mu}) \sim 1 - \sin^{2} 2\theta_{23} \times \sin^{2} \Delta \end{split}$$

 $P(\nu_{\mu} \to \nu_{\mu}) \sim 1 - (\cos^4 \theta_{13} \sin^2 2\theta_{23} + \sin^2 2\theta_{13} \sin^2 \theta_{23}) \sin^2 \Delta$

- With θ_{13} ~large and non-zero, we are in the era of full "3-flavor mixing"
 - all parameters (and their precision) matter
- Entering an era of precision where 3 flavor mixing effects matter
 - current $\sin^2\theta_{23}$ uncertainty in $v_{\mu} \rightarrow v_e$ appearance
 - $\sin^2\theta_{13}$ in v_{μ} disappearance

N.B. above equations are only for illustration

Spectrum Information

- At both HK and LBNE, spectrum information is important
- In principle, we need a thorough and precise understanding of
 - energy dependence of cross sections
 - energy reconstruction (relation between E_v and outgoing particles).
 - "kinematic": assume underlying mechanism and use $E_{\nu}(p_l, \theta_l)$
 - "calorimetric": sum energy outgoing particles.

- Many studies have assumed "normalization" systematics that scale overall event yields but preserve spectrum shape.
 - doesn't capture the full picture, but still very useful
 - estimates are becoming more sophisticated
 - Even few % systematic errors can have significant impact
 - how to incorporate potential ND measurements into sensitivity

Recent T2K study:

more details in D. Cherdack's talk

Issues

Recent issues

- *ab initio v*-int uncertainties are driven to a large extent by:
 - data/model discrepancies
 - model inadequacies
- Examples:
 - MiniBooNE "CCQE" σ
- low energy excess in v_e
- Model inadequacy means:
 - "inflated" parameter errors
 - "if the data don't fit, you must . . "
 - explore other models to span the space of ignorance/mismodeling

Other issues

P. Rodriguez Nulnt 2012

O. Lalakulich et al. hep-ex/1007.0925v2

Most model issues are with the nuclear environment

- but even nucleon-level scattering data has serious discrepancies.
- Revisit them?
- Need to think "differentially"
 - kinematic distributions important in addition to overall cross section
 - sometimes n-fold-differential
 - cross channel correlations
 - same physics in different *v*-int channels

Energy reconstruction

- To fully utilize spectral information, we have to confidence in final state kinematics
- Nuclear dynamics to a large extent determines neutrino energy reconstruction
 - not just "new" effects like MEC/multi-N but "old" stuff like π absorption, final state interactions

T. Leitner, U. Mosel

Phys.Rev. C81

Far $(\theta_{ij}, \Delta m^2_{ij})$ $v_{\mu} \rightarrow v_e (\theta_{23}, \theta_{13})$ $v_{\mu} \rightarrow v_{\mu/\tau} (\theta_{23}, \Delta m^2_{32})$ v_{μ}, v_e backgrounds

Far $(\theta_{ij}, \Delta m^2_{ij})$ $v_{\mu} \rightarrow v_e (\theta_{23}, \theta_{13})$ $v_{\mu} \rightarrow v_{\mu/\tau} (\theta_{23}, \Delta m^2_{32})$ v_{μ}, v_e backgrounds

 $\phi_v \cdot \sigma_v \cdot \epsilon_{FAR} \cdot P_{osc}$

Far $(\theta_{ij}, \Delta m^2_{ij})$ $v_{\mu} \rightarrow v_e (\theta_{23}, \theta_{13})$ $v_{\mu} \rightarrow v_{\mu/\tau} (\theta_{23}, \Delta m^2_{32})$ v_{μ}, v_e backgrounds

 $\phi_v \cdot \sigma_v \cdot \epsilon_{FAR} \cdot P_{osc}$

MC simulation of neutrino beamline tuned with external data + operational parameters

Far $(\theta_{ij}, \Delta m^2_{ij})$ $v_{\mu} \rightarrow v_e (\theta_{23}, \theta_{13})$ $v_{\mu} \rightarrow v_{\mu/\tau} (\theta_{23}, \Delta m^2_{32})$ v_{μ}, v_e backgrounds

 $\varphi_v \cdot \sigma_v \cdot \epsilon_{FAR} \cdot P_{osc}$

MC simulation of neutrino beamline tuned with external data + operational parameters

Neutrino cross section and interaction model tuned to external measurements

Far ($\theta_{ij}, \Delta m^2_{ij}$) $v_{\mu} \rightarrow v_e (\theta_{23}, \theta_{13})$ $v_{\mu} \rightarrow v_{\mu/\tau} (\theta_{23}, \Delta m^2_{32})$ v_{μ} , v_e backgrounds

 $\varphi_v \cdot \sigma_v \cdot \epsilon_{FAR} \cdot P_{osc}$

MC simulation of neutrino beamline tuned with external data + operational parameters

Neutrino cross section and interaction model tuned to external measurements

EFAR

Detector simulation to determine efficiencies/ backgrounds

Near detector observes the same neutrinos prior to neutrino oscillations

 $\phi_v \cdot \sigma_v \cdot \epsilon_{NEAR}$

Far $(\theta_{ij}, \Delta m^2_{ij})$ $v_{\mu} \rightarrow v_e (\theta_{23}, \theta_{13})$ $v_{\mu} \rightarrow v_{\mu/\tau} (\theta_{23}, \Delta m^2_{32})$ v_{μ} , v_e backgrounds $\varphi_{v} \cdot \sigma_{v} \cdot \varepsilon_{FAR} \cdot P_{OSC}$

EFAR

Detector simulation to determine efficiencies/ backgrounds

MC simulation of neutrino beamline tuned with external data + operational parameters

Neutrino cross section and interaction model tuned to external measurements

Far $(\theta_{ij}, \Delta m^2_{ij})$ $v_{\mu} \rightarrow v_e (\theta_{23}, \theta_{13})$ $v_{\mu} \rightarrow v_{\mu/\tau} (\theta_{23}, \Delta m^2_{32})$ v_{μ}, v_e backgrounds $\phi_v \cdot \sigma_v \cdot \epsilon_{FAR} \cdot P_{osc}$

EFAR

Detector simulation to determine efficiencies/ backgrounds

T2K ND fit

more details in D. Cherdack's talk

- Fit to ND data introduces anti-correlations between flux normalization

 (Φ) and v cross section (σ) parameters
- partial cancellation in predicted rate from ~28% to ~9%
 - ~3% due to parameters directly constrained by the ND data
 - question of "dominant" uncertainties is non-trivial

more details in D. Cherdack's talk

v_{μ} disappearance

 $P(\nu_{\mu} \to \nu_{\mu}) = 1 - \left(\cos^{4}\theta_{13} \sin^{2} 2\theta_{23} + \sin^{2} 2\theta_{13} \sin^{2} \theta_{23}\right) \sin^{2} \Delta m_{31}^{2} \frac{L}{4E}$

- High precision means we must consider higher order terms
 - θ_{13} : now known to be not so small . . . $\sin^2 \theta_{13} \sim 0.03$
- Precision v_μ disappearance will be a testing ground for latest developments in v-int theory/modeling and associated systematics

Top/down

- Design near detector to
 - maximize near/far cancellation
 - minimize *v*-int model dependence
- Advantages:
 - go directly to the issue without dealing with detailed *v*-int physics
 - usually calls for similar/same near/ far detector, simplifies analysis.
- Disadvantages:
 - there will always be some model dependence
 - data may not enlighten us on how to improve model (TLI)
 - how to estimate systematics with model you don't believe

Bottom/up

- Design near detector to
 - study details of *v*-int interactions
 - advance theory and modeling
- Advantages
 - more freedom to design detector to optimize "information"
 - more information to understand and verify *v*-int model
- Disadvantages:
 - may not tell you what you need to impact osc. physics immediately
 - detector/analysis may be more complicated (TMI), substantially different from far detector
- Which is better? "both" (and not exclusive)

- Off-axis effect gives continuously varying neutrino energy spectrum vs. angle
- Linear combinations of flux spectrum at various angles maps kinematic distribution in a narrow neutrino energy band
- "Model independent" measurement

3.5°

 2.5°

 1.5°

NA61

- Flux predictions will continue(?) to be a fundamental pillar for neutrino cross section/interaction physics
- Hadron production experiment(s) are essential for accurate predictions
- Can we make NA61 the ultimate hadron production experiment?
 - Are there other measurements needed/possible to reduce errors?
 - (pion scattering/absorption . .)
 - test beams for detector performance.

e-A scattering and vSTORM

S. Manly NuFact 2013 comparison to Genie e-A scat.

- e-A scattering data may be a fruitful testing ground of FSI models
 - data over large range of target nuclei
 - first results from CLAS
 - an enormous effort to understand CLAS analysis tools
- Potential of µSR-based neutrino sources for v-int should be further explored

Synthesis

- better theory may not immediately result in "improvement"
 - worse model may "effectively" better reproduce the data
 - better theory may improve certain parts, but leave out other issues
 - example: spectral function?
- as a community we need to improve the flow. . . .
 - smoother/porous interface at theory/generator interface
 - lots of progress recently, but we need to continue to improve and support

Looking ahead:

"this" = "overconstrain" the mixing matrix find/rule out new physics

Theory

- To look for "new" physics, we need know the "old" physics.
 - a few "golden modes" (e.g. $B \rightarrow \psi K$) with minimal theoretical issues
 - beyond that, QCD corrections were often very complicated and difficult
 - even "silver" modes like b→sγ required extremely complicated calculations to predict (beyond-)SM branching fractions
- Enormous effort invested into developing the necessary theoretical tools
 - lattice QCD (masses, form factors)
 - heavy quark effective theory and other factorization schemes
 - sum rules, etc.
 - other "work arounds" like ratios, isospin decomposition, etc.

circa 2002	$B^0 \to K^{*0} \gamma$	$B^+ \to K^{*+}\gamma$	$B^0 \to \rho^0 \gamma$	$B^+ \to \rho^+ \gamma$
Theory	7.1 ± 2.5	7.5 ± 2.5		0.16 ± 0.05
	7.9 ± 3.5	7.9 ± 3.5		
	7.2 ± 2.7	7.2 ± 2.7	0.049 ± 0.017	0.085 ± 0.30
Experiment	$4.55_{-0.68}^{+0.72} \pm 0.34$	$3.76^{+0.89}_{-0.83} \pm 0.28$	< 1.7	< 1.3
	$4.96 \pm 0.67 \pm 0.45$	$3.89 \pm 0.93 \pm 0.41$	< 1.06	< 0.99

Quarks and Leptons

- LBL experiments should make a similar investment into fundamental neutrino interaction physics to deliver on our promises
- The quark sector has a few advantages:
 - QCD is "particle physics".
 - Much of *v*-int physics is separated by particle/nuclear divide
 - cultural/social/funding/hosting issues
 - To a large extent, theory/experimental effort factorized
 - i.e. detailed theory wasn't needed to make the measurement
 - we are heavily dependent on the theory (via generators) to tell us what to measure, estimate systematic errors, etc.
- Where there is a clear opportunity, theory has delivered
 - fully embrace and support the theory we need, articulate the scientific opportunities, and push for it!

Quarks and Leptons

- LBL experiments should make a similar investment into fundamental neutrino interaction physics to deliver on our promises
- The quark sector has a few advantages:
 - QCD is "particle physics".
 - Much of *v*-int physics is separated by particle/nuclear divide
 - cultural/social/funding/hosting issues
 - To a large extent, theory/experimental effort factorized
 - i.e. detailed theory wasn't needed to make the measurement
 - we are heavily dependent on the theory (via generators) to tell us what to measure, estimate systematic errors, etc.
- Where there is a clear opportunity, theory has delivered

 fully embrace and support the theory we need, articulate the scientific opportunities, and push for it!

Quarks and Leptons

- LBL experiments should make a similar investment into fundamental neutrino interaction physics to deliver on our promises
- The quark sector has a few advantages:
 - QCD is "particle physics".
 - Much of *v*-int physics is separated by particle/nuclear divide
 - cultural/social/funding/hosting issues
 - To a large extent, theory/experimental effort factorized
 - i.e. detailed theory wasn't needed to make the measurement
 - we are heavily dependent on the theory (via generators) to tell us what to measure, estimate systematic errors, etc.
- Where there is a clear opportunity, theory has delivered

 fully embrace and support the theory we need, articulate the scientific opportunities, and push for it!

We need to do $\underline{\text{this}}$ in

the lepton sector!

Conclusions

- Many exciting upcoming opportunities in neutrino physics
 - CP violation, mass hierarchy, θ_{23} octant . . . and beyond?
 - Our detailed understanding of O(1 GeV) neutrino interactions will play a crucial role in getting at the "particle" physics
 - can we ensure that we will not be hampered by *v*-int uncertainties?
 - Good news is that T2K/NOvA give us regular "check-ups" on progress
- Exciting opportunity to make fundamental advances in *v*-int
 - can we actually reach a denouement on some of the issues?
 - forge /cultivate long-term/continuous collaboration with nuclear theory
 - ensure related/necessary measurements/analyses are carried through
 - hadron production, vSTORM?
 - test beams, electron/photoproduction data?
 - explore broadly new near detector concepts
 - start now . . . ?

T2K ν_e events

	$sin^{2}2\theta_{13}=0.1$		$sin^2 2\theta_{13} = 0$	
	<i>ve</i> Prediction (Events)	Error from Constrained Parameters	<i>v_e</i> Prediction (Events)	Error from Constrained Parameters
No ND280 Constraint	22.6	26.5%	5.3	22.0%
ND280 Constraint (2012, Runs 1-3)	21.6	4.7%	5.1	6.1%
ND280 Constraint (this analysis)	20.4	3.0%	4.6	4.9%
Total error (all sources)		8.8%		11.1%

- Near detector constrain can significantly reduce overall rate uncertainty
- Uncertainties now dominated by:
 - uncorrelated/unpropagated v interaction uncertainties
 - detector uncertainties
 - final state/secondary interactions uncertainties
- "Work in progress": will continue to improve, but where do we bottom out?

T2K error budget

	$\sin^2 2\theta_{13} = 0$		$\sin^2 2\theta_{13} = 0.1$	
Error source	w/o $\rm ND280$ fit	w/ ND280 fit	w/o $\rm ND280$ fit	w/ ND280 fit
Beam only Black: 2013	$10.6\ 10.8$	7.3 7.5	11.6 11.9	7.5 8.1
M_A^{QE} Blue: 2012	15.6 9.5	2.4 4.0	21.516.3	3.2 6.7
M _A ^{RES}	7.2 4.5	$2.1 \ 3.9$	3.3 2.0	0.9 1.8
CCQE norm. $(E_{\nu} < 1.5 \text{ GeV})$	7.1 4.9	4.8 3.8	9.3 7.9	$6.3 \ 6.2$
$CC1\pi$ norm. $(E_{\nu} < 2.5 \text{ GeV})$	4.9 5.1	$2.4 \ 3.5$	4.2 5.2	$2.0\ 3.5$
$NC1\pi^0$ norm.	2.7 7.9	1.9 7.3	$0.6 \ 2.3$	$0.4\ 2.2$
CC other shape	0.3 0.2	0.3 0.2	0.1 0.1	$0.1 \ 0.1$
Spectral Function	4.7 3.3	4.8 3.3	6.0 5.7	6.0 5.7
p_F	0.1 0.3	0.1 0.3	0.1 0.0	$0.1 \ 0.0$
CC coh. norm.	0.3 0.2	0.3 0.2	0.3 0.2	$0.2 \ 0.2$
NC coh. norm.	1.1 2.1	$1.1 \ 2.0$	0.3 0.6	0.2 0.6
NC other norm.	2.3 2.6	2.2 2.6	0.5 0.8	$0.5 \ 0.8$
$\sigma_{\nu_e}/\sigma_{\nu_{\mu}}$	2.4 1.8	$2.4 \ 1.8$	$2.9 \ 2.6$	2.9 2.6
W shape	1.0 1.9	1.0 1.9	$0.2 \ 0.8$	$0.2 \ 0.8$
pion-less Δ decay	3.3 0.5	$3.1 \ 0.5$	3.7 3.2	$3.5 \ 3.2$
SK detector eff.	5.7	5.6	2.4	2.4
FSI	3.0	3.0	2.3	2.3
PN	3.6	3.5	0.8	0.8
SK momentum scale	1.5	1.5	0.6	0.6
Total	24.5	11.1	28.1	8.8