The MINOS Experiment and MINOS+

<u>AUCI</u>

Leigh Whitehead

UCL

11th November 2013

NNN13

The MINOS Experiment

- \triangle Long-baseline neutrino oscillation experiment
	- $+$ L/E ~500 km / GeV
- \div Exposed by the NuMI beam
	- \triangleleft Runs off the Main Injector at Fermilab, USA
	- \blacklozenge v_u or \overline{v}_u beam mode
- \rightarrow Two detector system used to minimise systematics:
	- \div Beam flux
	- \rightarrow Neutrino interaction cross-sections
- $+$ Look for:
	- \rightarrow v_u disappearance
	- \star v_e appearance
	- \rightarrow Neutral current events

The MINOS Detectors

- \triangleleft Magnetised steel/scintillator sampling tracking calorimeters
	- \triangle Consecutive steel / scintillator planes
	- \triangle Average 1.3T field for charge selection
	- \div Functionally equivalent between ND and FD

Far Detector (FD)

- \rightarrow ND measures beam before oscillations
- \div FD looks for changes in the beam relative to the ND

What do we want to measure?

 U_{PMNS} = 1 0 0 $0 \t c_{23} \t s_{23}$ 0 $-s_{23}$ c_{23} \int ⎝ $\overline{}$ $\overline{}$ $\overline{}$ \overline{a} ⎠ ⎟ c_{13} 0 $s_{13}e^{-i\delta_{CP}}$ 0 1 0 $-s_{13}e^{i\delta_{CP}}$ 0 c_{13} \int ⎝ $\overline{}$ $\overline{}$ $\overline{}$ \overline{a} ⎠ c_{12} s_{12} 0 $-s_{12}$ c_{12} 0 0 0 1 \int ⎝ $\overline{}$ $\overline{}$ $\overline{}$ \overline{a} ⎠ ⎟ ⎟

← MINOS can measure: → Current unknowns:

- \blacklozenge θ_{23} from v_{μ} disappearance
- \triangleq | Δm^2_{32} | from v_µ disappearance
- $\triangleq \theta_{13}$ from v_e appearance

- \triangle Octant of θ_{23}
	- \div Is it maximal?
- \div Sign of Δm^2_{32} ª Normal or inverted hierarchy?

 \rightarrow Value of δ_{CP}

 \div Studying three flavour oscillations will provide the answers!

Data Samples

\div Use the full MINOS data set.

- \div 10.71 x 10²⁰ POT neutrino mode
- \div 3.36 x 10²⁰ POT antineutrino mode
- \div 37.88 kton years FD atmospheric neutrinos

Disappearance Measurements

\rightarrow Predict the FD un-oscillated spectrum

 \triangle Compare FD data to the prediction.

 \div Fit the FD under the hypothesis of neutrino oscillations.

 \rightarrow Two flavour approximation, or full three flavour

 \triangle Include 15 systematic parameters as nuisance terms

Two Flavour Muon Neutrino Disappearance $\sqrt{ }$ $\left(\frac{1.27\Delta m^2L}{E}\right)$

 \rightarrow **Two flavour approximation:** $P(v_\mu \rightarrow v_\mu) = 1 - \sin^2(2\theta)\sin^2\left(\frac{1.27\Delta m^2L}{E}\right)$

Phys. Rev. Lett. 110, 251801 (2013)

E

()

 \setminus

Three Flavour Muon Neutrino Disappearance $P(V_{\mu} \rightarrow V_{\mu}) = 1 - \sin^2(2\theta_{\mu\mu})\sin^2\left(\frac{1.27\Delta m_{\mu\mu}^2 L}{E}\right)$ *E* \int ⎝ $\overline{}$ \overline{a} ⎠ $\left| + \circ \right| \Delta m_{\odot}^2$ ² *L E* $\big($ ⎝ $\Big(\, \Delta m^2_\odot \, {L \over E} \Big)$ \overline{y} ⎟ 2 $\Delta m^2_{\mu\mu} = \Delta m^2_{32} +$ $1 - |U_{\mu 1}|$ 2 $U_{\mu 3}$ $\sin^2 \theta_{\mu\mu} = \sin^2 \theta_{23} \cos^2 \theta_{13}$ $\Delta m_{\mu\mu}^2 = \Delta m_{32}^2 + \frac{\sum_{\mu} |\Delta m_{21}^2|}{|R_{12}^2 + |M_{21}^2|} \Delta m_{21}^2$

 \div Disappearance depends on:

 \rightarrow Solar oscillation parameters \rightarrow Mass hierarchy \div θ_{13}

 \rightarrow Matter effects important for multi-GeV up-going atmospherics

- \rightarrow Make a 4D fit to the FD data in $(\Delta m_{32}^2, \sin^2 \theta_{23}, \sin^2 \theta_{13}, \delta_{CP})$
	- \triangle Constrain θ_{13} from the reactor experiment average:

 $\sin^2 \theta_{13} = 0.0242 \pm 0.0025$

 \div Solar parameters fixed at the global average^t

$$
\Delta m_{21}^2 = 7.54 \times 10^{-5} eV^2
$$

$$
\sin^2 \theta_{12} = 0.307
$$

† Fogli et al. Phys. Rev. D 86, 013012 (2012)

Fitted Far Detector Beam Samples

\triangleleft Best fit shown for the v_{μ} and \overline{v}_{μ} samples.

 \rightarrow Two and three flavour fits almost $\frac{2}{9}^{2400}$
indistinguishable. $\frac{2}{9}^{2400}$ indistinguishable.

 \div Fit also includes \overline{v}_u in the neutrino beam and the non-fiducial muons.

Fitted Far Detector Atmospheric Samples

\triangleleft Best fit shown contained v_{μ} and \overline{v}_{μ} samples.

 \div Fit also includes non-contained μ / μ ⁺ and shower-like events.

Leigh Whitehead - NNN13 - 11/11/13 11

Three Flavour Electron Neutrino Appearance

- \rightarrow In the three flavour fit, we can also include the v_{α} appearance
	- \triangle Helps to probe the three flavour oscillation effects
	- \rightarrow To first order, neglecting matter effects:

$$
P(v_{\mu} \rightarrow v_e) = \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \left(\frac{1.27 \Delta m_{31}^2 L}{E}\right)
$$

- \div Sensitive to the value of $\delta_{\rm cp}$
- \rightarrow Matter effects play a large role
	- \rightarrow Modifies oscillation probability by ~30%
	- \rightarrow Term is dependent on the sign of the mass splitting
		- \rightarrow Provides potential to probe the mass hierarchy

\triangle Sensitive to θ_{23} octant

Three Flavour Electron Neutrino Appearance

Leigh Whitehead - NNN13 - 11/11/13 12

Three Flavour Disappearance and Appearance

\triangle Combine the information from both fits

 \div Each provides a 4D likelihood surface in Δm^2 ₃₂, sin² θ_{23} sin² θ_{13} and δ_{cp}

\div Systematics assumed to be uncorrelated

 \rightarrow Normal hierarchy, upper octant case is now further disfavoured \triangle At least 90% C.L for half δ_{cp} range

Leigh Whitehead - NNN13 - 11/11/13 13

Three Flavour Disappearance and Appearance

 \rightarrow Slight preference for the inverted hierarchy

 \rightarrow Normal hierarchy, higher octant disfavoured

Three Flavour Disappearance and Appearance

\rightarrow The four local best fit points:

 \rightarrow Prefer non-maximal mixing at 79% C.L.

Four Flavour Oscillations

 \rightarrow Oscillations to a fourth sterile neutrino will change the energy spectra we measure
 Δm^2 (1st Minimum)

 $+$ 3 Regimes:

- \triangle Small Δm^2_{43} : Wide oscillations at the FD. Coming soon!
- \rightarrow Medium Δm^2_{43} : Rapid oscillations that average out at the FD. Done!
- \triangle Large Δm^2 ₄₃: Oscillations in the ND.

Coming soon!

Neutral Current

 \rightarrow All neutrino flavours undergo neutral current (NC) interactions

 \triangle Any deficit in the number of NC events can probe sterile neutrinos

\div Combined fit of the CC and NC spectra

 \rightarrow No evidence found for sterile neutrinos with $\Delta m^2_{43} = 0.5 eV^2$

Neutral Current – Mixing Angle Limits

 \rightarrow We can now place limits on the values of the mixing angles

 \div 90% C.L: θ_{24} < 5^o \div 90% C.L: θ_{34} < 24° \rightarrow Very slight preference to upper octant of θ_{23}

Neutral Current – Combined with BUGEY

- \rightarrow To compare to short-baseline appearance experiments, combine with BUGEY:
	- $\rightarrow \sin^2 2\theta_{\mu e} \sim \sin^2 2\theta_{14} \sin^2 \theta_{24}$
	- \triangleleft MINOS sensitive to θ_{24} and θ_{34}
	- \triangle BUGEY sensitive to θ_{14}
- \triangle Coming soon:
	- \div Full contour over range of Δm^2

$$
4 \text{ At } \Delta m_{43}^2 = 0.5 eV^2
$$

MINOS+

- \div MINOS+ is a continuation of the MINOS experiment into the NOνA era. 1.5
	- \rightarrow Beam now runs in ME mode.
	- \div ME spectrum peaks above oscillation dip.

- \div Expect ~4000 events per year.
	- \rightarrow Precision test of the oscillation hypothesis in the tail.
	- \triangle Search for sterile neutrinos (using both CC and NC), extra dimensions etc.

MINOS+ Three Flavour Sensitivity

← Sensitivity of MINOS & MINOS+

MINOS combined disappearance and appearance.

MINOS combined disappearance and appearance plus MINOS+ disappearance

MINOS+: Up and running!

- \div As of the start of September \rightarrow NuMI running well at ~350kW \rightarrow We have FD events!
- \rightarrow NuMI expected to run at ~700kW once all upgrades are completed

Conclusions

- \div The final word from MINOS:
	- \div First combined disappearance and appearance result from a longbaseline experiment

- \triangle See no tension between neutrino and antineutrino oscillation parameters
- \rightarrow No evidence of sterile neutrinos at $\Delta m^2_{43} = 0.5 eV^2$
- \triangle Look out for updates to the sterile neutrino analysis

← MINOS+ will continue where MINOS left off, providing exciting physics results in the coming years

Thank You

Backup Slides

<u>AUCL</u>

Neutrino Oscillations

- \rightarrow The neutrino weak flavour states are not the same as the neutrino mass states.
	- \triangle Creation and detection governed by flavour states
	- \rightarrow Propagation governed by mass states

$$
\begin{pmatrix}\n\mathbf{v}_e \\
\mathbf{v}_\mu \\
\mathbf{v}_\tau\n\end{pmatrix} = U_{PMNS}^\dagger \begin{pmatrix}\n\mathbf{v}_1 \\
\mathbf{v}_2 \\
\mathbf{v}_3\n\end{pmatrix} \quad P(\mathbf{v}_\alpha \rightarrow \mathbf{v}_\beta) = \left| \sum_j U_{\beta j}^* e^{-i \frac{m_j^2 L}{2E}} U_{\alpha j} \right|^2
$$

 \rightarrow Matrix U governs the oscillation of a neutrino of one flavour into a different flavour.

The PMNS Matrix and Mass Hierarchy

 \div Can be written as a product of three matrices

$$
U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \ 0 & c_{23} & s_{23} \ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

\nAtmospheric and
\nLEL beam
\nexpression
\n
$$
V_3
$$

\n
$$
V_4
$$

\n
$$
V_5
$$

\n
$$
V_6
$$

\n
$$
V_7
$$

\n
$$
V_8
$$

\n
$$
V_9
$$

\n
$$
V_1
$$

\n
$$
V_2
$$

\n
$$
V_4
$$

\n
$$
V_2
$$

\n
$$
V_4
$$

\n
$$
V_3
$$

\n
$$
V_4
$$

\n
$$
V_5
$$

\n
$$
V_6
$$

\n
$$
V_7
$$

\n
$$
V_8
$$

\n
$$
V_9
$$

\n
$$
V_9
$$

\n
$$
V_1
$$

\n
$$
V_2
$$

\n
$$
V_3
$$

\n
$$
V_4
$$

\n
$$
V_3
$$

\n
$$
V_4
$$

\n
$$
V_5
$$

\n
$$
V_6
$$

\n
$$
V_7
$$

\n
$$
V_8
$$

\n
$$
V_9
$$

\n
$$
V
$$

Open Questions

\rightarrow There are still lots of unknowns in neutrino physics!

- \triangleq Is $\theta_{23} = 45^{\circ}$?
	- \div If not, is it higher or lower octant?
- \triangle Is the mass hierarchy normal or inverted?
- \rightarrow What is the absolute scale of neutrino mass?
- \rightarrow Are neutrinos Dirac or Majorana?
	- \triangle Majorana neutrinos would open the door to the seesaw mechanism
- \rightarrow Do neutrinos violate CP?
	- \div Is it enough to explain the matter antimatter asymmetry of the universe?
- \rightarrow Why does the PMNS matrix have the form it does?
	- \triangle Is there an underlying symmetry?
- \rightarrow Why is the PMNS matrix different to the CKM matrix?
- \triangle Are there any sterile neutrinos?

The NuMI Beam

 \rightarrow Beam starts with 120 GeV protons from the Main Injector.

Beam Simulation

- \rightarrow The beam simulation is tuned using data from the ND
	- \rightarrow Take advantage of the different run types to constrain the simulation

Detector Technology

 \rightarrow Detectors built from alternating planes:

- \div 2.54cm steel absorber ~1.4 X_0
- \div 1cm thick scintillator.
- \triangle Scintillator planes:
	- \triangleleft Made from plastic scintillator bars, each 4.1cm wide.
	- \triangleleft Read out by multi-anode PMTs via WLS fibres.
	- \triangle Alternating layers have bars in orthogonal directions views, U and V
- \triangle Magnetic field allows for charge separation.
	- \triangle Both detectors have average field of 1.3T

Measurement Strategy: Overview

\div Use the ND to predict the FD un-oscillated spectrum

 \rightarrow The extrapolation to the FD requires a few steps...

Measurement Strategy: Extrapolation I

\rightarrow Starting with the ND data:

- \triangle Correct for ND purity and efficiency and apply reco-true matrix
- \rightarrow Account for cross-sections, PoT and ND mass

\rightarrow Need to account for beam differences now

- \rightarrow The energy spectrum differs between the two detectors
	- \rightarrow Different angular acceptances
	- \triangle Low energy pions decay upstream in the decay pipe.
- \div FD sees a point source
- \rightarrow ND sees an extended source

Measurement Strategy: Extrapolation II

\rightarrow Apply the beam matrix to extrapolate to the FD.

 \rightarrow Then apply the FD specific corrections.

 \rightarrow These are the analogues to those shown previously for the ND

\rightarrow Provides the un-oscillated prediction at the FD

Leigh Whitehead - NNN13 - 11/11/13 34

Event Topologies in MINOS

\div Expect to see three classes of event.

Identify muon track and use curvature to measure the sign.

Momentum comes from range or curvature (if not contained).

Compact electromagnetic shower. Disperse hadronic shower energy deposits.

Three Flavour Muon Neutrino Disappearance

$$
P(V_{\mu} \rightarrow V_{\mu}) = 1 - \sin^2 2\theta_{23} \cos^2 \theta_{13} \sin^2 \left(\frac{1.27 \Delta m_{\mu\mu}^2 L}{E}\right) + \mathcal{O}\left(\Delta m_{\odot}^2\right)
$$

 \rightarrow Disappearance depends on:

- \triangleleft Solar oscillation parameters \bigstar Mass hierarchy
- \div θ_{13} \triangle θ_{23} octant (very weakly)
- \rightarrow Matter effects important for multi-GeV up-going atmospherics
- \rightarrow Make a 4D fit to the FD data in $(\Delta m_{32}^2, \sin^2 \theta_{23}, \sin^2 \theta_{13}, \delta_{CP})$
	- \triangle Constrain θ_{13} from the reactor experiment average:

 $\sin^2 \theta_{13} = 0.0242 \pm 0.0025$

\div Solar parameters fixed at the global average[†]

$$
\Delta m_{21}^2 = 7.54 \times 10^{-5} eV^2
$$

$$
\sin^2 \theta_{12} = 0.307
$$

² *L*

 $\bigg(\, \Delta m^2_\odot \, \frac{L}{E} \,\bigg)$

 $1 - |U_{\mu 1}|$

 $U_{\mu 3}$

 $\big($

⎝

 $\Delta m^2_{\mu\mu} = \Delta m^2_{32} +$

E

⎠ ⎟

2

 $\frac{11}{2} \Delta m_{21}^2$

2

Disappearance Analysis Event Counts

\rightarrow Predicted numbers with oscillations made assuming: $\Delta m^2 = 2.41 \times 10^{-3} eV^2$

 $\sin^2 2\theta = 0.95$

Matter Effects (MSW)

 \triangle Interactions with matter modify the standard oscillations

- \triangle Comparing between 2 and 3 flavour oscillations, see fairly large variation for ~few GeV atmospheric neutrinos
- \triangle Changes the probability by up to 30%
- \div Gives sensitivity to the mass hierarchy
- \rightarrow Very small effect for the beam neutrinos

Matter Effects (MSW)

 \rightarrow Interactions with matter modify the standard oscillations

- \triangle Comparing between 2 and 3 flavour oscillations, see fairly large variation for ~few GeV atmospheric neutrinos
- \triangle Changes the probability by up to 30%
- \div Gives sensitivity to the mass hierarchy
- \rightarrow Very small effect for the beam neutrinos

Earth Matter Model

 \triangle Beam: Use fixed electron density of 1.36 mol cm⁻³

 \rightarrow Atmospherics: Use a 4 layer model

 \rightarrow Negligible effect on the result between using 4 and 55 layers

Two Flavour Disappearance: CPT

- \div Fitted with neutrino and antineutrino parameters separate and free to float
- MINOS v_{μ} disappearance 3.0 –68% C.L. 10.71 \times 10²⁰ POT v_μ mode -90% C.L $|\Delta m^2| / (10^{-3} eV^2)$ 3.36 \times 10²⁰ POT \overline{v}_μ mode \triangle The old tension between \bullet Best fit 37.88 kt-yr Atmospheric the results has vanished \div CPT conserved $\cdots |\Delta m^2| = |\Delta \overline{m}^2|$ 2.0 3.0 $\frac{2.5}{|\Delta \overline{m}^2|}$ / (10⁻³ eV²) 2.0

$$
\left|\Delta \overline{m}^2\right| - \left|\Delta m^2\right| = \left(0.12^{+0.24}_{-0.26}\right) \times 10^{-3} eV^2
$$

Phys. Rev. Lett. 110, 251801 (2013)

Two Flavour Disappearance: Comparisons

 \div Combined MINOS two-flavour contour with same oscillation parameters for neutrinos and antineutrinos.

$$
+ \text{ Best fit at:}
$$

\n
$$
\Delta m^2 = 2.41^{+0.09}_{-0.10} \times 10^{-3} eV^2
$$

\n
$$
\sin^2 2\theta = 0.950^{+0.035}_{-0.036}
$$

 \triangle Hints that mixing may not be maximal

Disappearance: Systematic Uncertainties

- \div Star plots show the relative size of statistical and systematic uncertainties
	- \rightarrow They are fitted as nuisance parameters in the fit

Disappearance: Systematic Uncertainties

\rightarrow Plot shows how the systematics are pulled in the fit

 \rightarrow The majority of these pulled by less than one sigma.

Phys. Rev. Lett. 110, 251801 (2013)

Electron Neutrino Selection

 \rightarrow Very challenging given the coarse nature of the calorimeters!

- \div Electron neutrinos are selected using the Library Event Matching algorithm
- \triangle Candidates compared to a library of simulated signal and background events.
- \div The 50 best matches are used to form variables to discriminate signal and background.

Phys. Rev. Lett. 110, 171801 (2013)

Electron Neutrino Results

 \triangleleft Best fit, assuming $\sin^2(2\theta_{23}) = 1, \delta = 0$ and normal (inverted) hierarchy:

 $\sin^2(2\theta_{13}) = 0.053(0.094)$

$$
\sin^2(2\theta_{13}) = 0
$$
 excluded at 96%

Phys. Rev. Lett. 110, 171801 (2013)

Electron Antineutrino Results

\div Fit to just the antineutrino events

 \triangleleft Best fit, assuming $\sin^2(2\theta_{23}) = 1, \delta = 0$ and normal (inverted) hierarchy:

 $\sin^2(2\theta_{13}) = 0.079(0.098)$

 $\sin^2(2\theta_{13}) = 0$ excluded at 80%

Phys. Rev. Lett. 110, 171801 (2013)

Disappearance + Appearance

Leigh Whitehead - NNN13 - 11/11/13 48

MINOS, T2K and SK

- \div Comparison of the MINOS combined result with SK and T2K
	- **← Note: T2K result converted** from sin²2 θ to sin² θ_{23}

Four Flavour Oscillations

+ LSND/MiniBooNE measured $\sin^2 2\theta_{\mu e} \sim \sin^2 2\theta_{14} \sin^2 \theta_{24}$

★ MINOS NC measures
$$
\sin^2 2\theta_{\mu s} \sim \sin^2 2\theta_{24} \cos^2 \theta_{34}
$$

 \triangle Reactor experiments measure $\sin^2 2\theta_{ee} \sim \sin^2 2\theta_{14}$

 \rightarrow Therefore it makes sense to combine MINOS with a reactor experiment such as BUGEY to set a limit on $\sin^22\theta_{\mu e}$

TOF Analysis

190

 \overline{a}

^AUCL

START OF STRAIN

TOF Overview

 \rightarrow Measure the time of flight between the ND and FD.

 \div Distance of 734,286.8m

- \rightarrow To perform the time of flight measurement, need to know very precisely:
	- \rightarrow The distance between the ND and the FD.
	- \rightarrow All time delays:
		- \div Cables, GPS offsets, etc etc
- \rightarrow Worked with:
	- \rightarrow NIST Time and Frequency Division
	- \triangleleft USNO Time Service Department

 \rightarrow Perform a likelihood fit on the FD data to the time of flight

Measuring Distances

- \rightarrow Three components to measure: \rightarrow Surface distance between ND and FD \rightarrow Distance from surface to underground at ND \rightarrow Distance from surface to underground at FD
- \rightarrow The last point is the most challenging \div FD is 2341 feet down a single mineshaft \rightarrow No line of sight from the surface to the FD
- \rightarrow Don't forget that the Earth rotates!

Timing Diagram

TOF Likelihood: 1 event

TOF Likelihood: 10 events

TOF Likelihood: 30 events

TOF Likelihood: 60 events

TOF Likelihood: 195 events

Leigh Whitehead - NNN13 - 11/11/13 59

TOF Result

\rightarrow Separate fits to the contained and RAF events.

