A New Method for Event Reconstruction in Large Cherenkov Detectors

Michael Wilking, TRIUMF NNN Conference IPMU, Kashiwa 12-Nov-2013

Physics Applications

- Search for proton decay
- Neutrino physics
 - Solar neutrinos
 - Atmospheric neutrinos
 - Accelerator neutrinos
- Supernova neutrinos
- High-energy astrophysical neutrinos
- Indirect dark matter
- Broad physics reach

. . .

• Much to be gained from better utilizing this technology

The Super-K Detector

- 50 kton water Cherenkov detector
- μ[±] detection
 - Less scattering \Rightarrow sharp rings
- e[±] detection
 - More scattering \Rightarrow fuzzy rings
- π^{o} detection
 - Selectron rings (π⁰→2γ)
 - To separate from electrons, **MUST** detect 2nd ring

fiTQun: A New Event Reconstruction Algorithm for Super-K

- For each Super-K event we have, for every hit PMT
 - A measured charge
 - A measured time
- For a given event topology hypothesis, it is possible to produce a change and time PDF for each PMT
 - Based on the likelihood model used by MiniBooNE (NIM A608, 206 (2009))
- Framework can handle **any number of reconstructed tracks**
 - Same fit machinery used for all event topologies (e.g. e^{-} and π^{0})
- Event hypotheses are distinguished by comparing best-fit likelihoods
 - electron / π^0
 - electron / muon / π^+ / K⁺ / p / ...
 - 1-ring / 2-ring / 3-ring ...

The Likelihood Fit

- A single track can be specified by a particle type, and 7 kinematic variables (represented above as the vector x):
 - A vertex position (X, Y, Z, T)
 - A track momentum (p)
 - A track direction (θ, ϕ)
- For a given **x**, a charge and time PDF is produced for every PMT
- The **charge PDF** is factorized into:
 - Number of photons reaching the PMT
 - Predicted charge (µ)
 - PMT & electronics response
 - All 7 track parameters fit simultaneously

Property of the electronics and PMT properties

Time PDF

Predicted Charge (µ):

Number of photons that reach the PMT
Depends on detector properties (scat, abs, etc.)

The Likelihood Fit

Particle Track

Particle Track

Particle Track

U = amount of charge seen by a PMT

Particle Track

U = amount of charge seen by a PMT

U = amount of charge seen by a PMT

- For multi-particle states, predicted charges are summed
- Scattered and reflected light is treated separately (and more crudely: tabulation)

PMT

One-Track Fit Performance

Shown with preivous Super-K reconstruction, **apfit**, for comparison

Electrons

Muons

Single Track Particle ID

- Simple line cut can be used to separate muons and electrons
- Significantly improved particle ID

Test Case: The T2K Experiment

Super-K Detector

J-PARC Accelerator

- The T2K experiment searches for neutrino oscillations in a high purity v_{μ} beam
- A near detector located 280 m downstream of the target measures the unoscillated neutrino spectrum
- The neutrinos travel 295 km to the Super-Kamiokande water Cherenkov detector
 - For θ_{13} search: Super-K looks for the appearance of v_e
 - For θ_{23} measurement: The v_{μ} at the near and far detectors are compared to search for v_{μ} disappearance

Near Detector

Previous T2K v_e Results (2012)

- 11 events observed
- $\sin^2 2\theta_{13} = 0.094^{+0.053}_{-0.040}$
- **3.2** σ exclusion of θ_{13} =0

- 3.22 ± 0.43 background events
 - 1.56 ± 0.20 intrinsic beam ve
 - Irreducible
 - 1.26 ± 0.35 v_{μ} neutral current (mostly π^{0})
 - Reducible?

Background Reduction

40% of the v_e appearance background was from π^0 where the 2nd photon was missed

Can fiTQun do better?

fiTQun π^0 Fitter

- Assumes two electron hypothesis rings produced at a common vertex
- **12 parameters** (single track fit had '7)
 - Vertex (X, Y, Z, T)
 - Directions $(\theta_1, \phi_1, \theta_2, \phi_2)$
 - Momenta (p_1, p_2)
 - Conversion lengths (c_1, c_2)
- Seeding the fit
 - Use result of single-track electron fit
 - Scan over various directions with a 50 MeV/c electron and evaluate the likelihood function
 - Choose the direction that yields the best likelihood
 - First, fit while floating only p_1 and p_2
- Do full 12 parameter fit

π⁰ Performance

- Previous T2K v_e appearance cut: $m_{\pi 0} < 105$ MeV
- The π⁰ mass tail is much smaller for fiTQun
 - Significant spike at zero mass in previous fitting algorithm (**apfit**)
 - All events in the spike are background
 - fiTQun shows no spike
- <u>Lower plot:</u> π⁰ rejection efficiency vs lower γ energy
 - fiTQun is more sensitive to lower energy photons

Even Better π^0 Rejection

- fiTQun can also use the likelihood
 ratio to distinguish e⁻ from π⁰
 - Even if 2nd photon is identified, it may be on the tail of the π^0 mass resolution
 - In this case, the 2-ring likelihood will still be preferred
- 2D cut **removes 70% more** π⁰ **background**
 - (2% loss in signal efficiency)
- Improves v_e appearance sensitivity from **5.0** σ to **5.5** σ
- More improvements to come!
 - Improved PID, ring counting, etc.

Likelihood Ratio vs π^0 Mass

Other fiTQun Tools: π⁺ Fitter

electron tracks muon tracks tracks

- Pions and muons have very similar Cherenkov profiles
 - Main difference is the hadronic interactions of pions
- Ring pattern observed is a "kinked" pion trajectory (thin ring with the center portion missing)
- First ever π^+ / μ separation at Super-K!

Other Tools: Multi-ring Fitter

- Fit up to 4 rings using e & π⁺ hypotheses (soon to be 6!)
 - 28 fits in total (every possible e/π^+ combination)
- μ hypothesis is a subset of the π^+ hypothesis
 - Just need to move the kink point below Cherenkov threshold

Ring Counting

- Compare best (n)-ring likelihood
 to best (n+1)-ring likelihood
 - Ring counting now depends on particle ID
- Can test performance on atmospheric neutrino sample
 - Higher energy neutrinos = more rings
 - Define a "true ring"
 - Any particle >10 MeV/c above Cherenkov threshold
- Good performance seen up to 4 rings
 - More improvement on the way

ν_{μ} Disappearance: fiTQun vs apfit

Fraction of apfit selected events removed:

v_{μ} + \overline{v}_{μ} CCQE	4.8%
ν _μ +ν _μ ϹϹΙπ	21.5%
ν_{μ} + $\overline{\nu}_{\mu}$ CCother	53.7%
$v_e + \overline{v}_e CC$	92.1%
NC	61.2%

- fiTQun signal efficiency is **higher below 1 GeV**
- Significant reduction of NC background due to π^+ rejection
 - NCπ⁺ background has a very large uncertainty (>100%)
 - NCπ⁺ piles up near the oscillation dip

• Expect significant enhancement in θ_{23} and Δm^2_{32} sensitivity

Other Uses for fiTQun

In principle, any Super-K physics analysis can benefit from fiTQun

Particularly, Proton Decay

Reconstruction requirements are very similar to T2K ν_e appearance requirements

$p \rightarrow K^+ v$

- Search via the largest two K⁺ decay channels
 - $\mathbf{K}^{+} \rightarrow \mu^{+} \nu_{\mu}$

•

•

- Search for 6 MeV photon from nuclear de-excitation
 - Very low energy \rightarrow current algorithm is very inefficient
 - **Only 6% 10% efficiency** (>40% have a nuclear photon)
 - **Large potential improvement** if low-energy photon detection can be improved

Image credit: Ed Kearns

- $K^+ \rightarrow \pi^+ \pi^0$
 - No previous ability to rec
 - Instead, sum charge is the π^0 direction
 - veto on any other cha
 - fiTQun can reconstruct charged pions
 - Can also do **simultaneous** $\pi^{+}\gamma\gamma$ **fit** and compare likelihood with background hypotheses

u+

site

Future Experiments: Hyper-K

- $\nu_{\mu} \rightarrow \nu_{e} CC$ 3606 2339 $\nu_{\mu} \rightarrow \nu_{e} CC$ 0.99 Mton of water ([^] ucia 23 $\nu_{\mu} + \nu_{\mu} CC$ 35 $v_u + v_u CC$ $ve+v_e CC$ 880 878 $v_e + v_e CC$ Physics goals include θ_{a} NC 649 NC 678
- Same detector design, neutrino beam, backgrounds, etc. as Super-K/T2K
 - Expect similar improvements in performance
- fiTQun is currently being adapted to the Hyper-K software

IceCube, DeepCore, Pingu, MICA

- Increasing the number of photosensors lowers the energy threshold
- This is a problem fiTQun is even better suited to solve
 - Arbitrary phototube locations are naturally accommodated
 - No reflections from tank walls
 - Treatment of non-direct light is greatly simplified
- Proton decay, atmospheric v, ...

Neutrino Telescopes (IceCube, ANTARES, etc.)

IceCube

AMANDA

DeepCore

Summary

- fiTQun is a new reconstruction algorithm for large Cherenkov Detectors
- Significant improvements are seen over previously used algorithms
 - Large reductions in poorly understood backgrounds for T2K ν_e appearance and ν_μ disappearance measurements
- fiTQun is beginning to seep into other Super-K analyses
 - Atmospheric neutrinos
 - Proton Decay
- fiTQun can make important contributions to future Cherenkov detectors, such as Hyper-K and PINGU/MICA