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Physics Applications
• Search for proton decay

• Neutrino physics

• Solar neutrinos

• Atmospheric neutrinos

• Accelerator neutrinos

• Supernova neutrinos

• High-energy astrophysical 
neutrinos

• Indirect dark matter

• ...

• Broad physics reach

• Much to be gained 
from better utilizing 
this technology

SNOMiniBooNE

IceCube

Super-Kamiokande

Antares
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• 50 kton water Cherenkov detector

• μ± detection

• Less scattering ⇒ sharp rings

• e± detection

• More scattering ⇒ fuzzy rings

• π0 detection

• 2 electron rings (π0→2γ)

• To separate from electrons, 
MUST detect 2nd ring

µ e 

π0 

The Super-K Detector
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fiTQun: A New Event Reconstruction 
Algorithm for Super-K

• For each Super-K event we have, for every hit PMT

• A measured charge

• A measured time

• For a given event topology hypothesis, it is possible to produce
a change and time PDF for each PMT

• Based on the likelihood model used by MiniBooNE
(NIM A608, 206 (2009)) 

• Framework can handle any number of reconstructed tracks

• Same fit machinery used for all event topologies (e.g. e- and π0)

• Event hypotheses are distinguished by comparing best-fit likelihoods

• electron / π0

• electron / muon / π+ / K+ / p / ...

• 1-ring / 2-ring / 3-ring ...
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L(x) =
�

unhit

P (iunhit;x)
�

hit

P (ihit;x)fq(qi;x)ft(ti;x)

The Likelihood Fit

• A single track can be specified by a particle type, 
and 7 kinematic variables 
(represented above as the vector x):

• A vertex position (X, Y, Z, T)

• A track momentum (p)

• A track direction (θ, φ)

• For a given x, a charge and time PDF is produced 
for every PMT

• The charge PDF is factorized into:

• Number of photons reaching the PMT

• Predicted charge (μ)

• PMT & electronics response

• All 7 track parameters fit simultaneously

Time PDF

Charge PDF

PMT Charge 
Response:

Property of the 
electronics and 
PMT properties

Predicted Charge (μ):

- Number of photons that 
reach the PMT
- Depends on detector 
properties (scat, abs, etc.)
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• A track momentum (p)

• A track direction (θ, φ)

• For a given x, a charge and time PDF is produced 
for every PMT

• The charge PDF is factorized into:

• Number of photons reaching the PMT

• Predicted charge (μ)

• PMT & electronics response

• All 7 track parameters fit simultaneously

Time PDF

Charge PDF

PMT Charge 
Response:

Property of the 
electronics and 
PMT properties

Predicted Charge (μ):

- Number of photons that 
reach the PMT
- Depends on detector 
properties (scat, abs, etc.)

Calculating μ is the 
main challenge
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Predicted Charge (μ)
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Predicted Charge (μ)

Particle Track
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Predicted Charge (μ)

Particle Track

PMT
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Predicted Charge (μ)

Particle Track

PMT

μ = amount of charge seen by a PMT
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Predicted Charge (μ)

Particle Track

PMT

μ = amount of charge seen by a PMT

µ =
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Predicted Charge (μ)

Particle Track
s = distance along track

PMT

μ = amount of charge seen by a PMT

µ =
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Predicted Charge (μ)

Particle Track
s = distance along track

θCh
θCh

θCh

θCh

PMT

µ =
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Predicted Charge (μ)

Particle Track
s = distance along track
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Predicted Charge (μ)

Particle Track
s = distance along track
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Predicted Charge (μ)

Particle Track
s = distance along track
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All PID information
is encoded in

these histograms!
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Predicted Charge (μ)

Particle Track
s = distance along track

θCh
θCh

θCh

θCh

Cherenkov light emission profile

θcos
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s 
[c

m
]

0

10

20

30

40

50

60

70

80

90

0

0.1

0.2

0.3

0.4

0.5
Angular profile (weighted direction)

muon

s 
(c

m
)

cos θ

θcos
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s 
[c

m
]

0

10

20

30

40

50

60

70

80

90

0.02

0.04

0.06

0.08

0.1

Angular profile (weighted direction)

electron

s 
(c

m
)

cos θ

PMT

µ =
g(s, cos✓)

(e±, μ±, π±, K±, p)

All PID information
is encoded in

these histograms!
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Predicted Charge (μ)

Particle Track
s = distance along track
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Ω
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Predicted Charge (μ)

Particle Track
s = distance along track

θCh
θCh

θCh

θCh

Cherenkov light emission profile

θcos
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s 
[c

m
]

0

10

20

30

40

50

60

70

80

90

0

0.1

0.2

0.3

0.4

0.5
Angular profile (weighted direction)

muon

s 
(c

m
)

cos θ

θcos
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s 
[c

m
]

0

10

20

30

40

50

60

70

80

90

0.02

0.04

0.06

0.08

0.1

Angular profile (weighted direction)

electron

s 
(c

m
)

cos θ

PMT

µ =
g(s, cos✓)

(e±, μ±, π±, K±, p)

All PID information
is encoded in

these histograms!

Ω

6



Predicted Charge (μ)

Particle Track
s = distance along track
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Predicted Charge (μ)

Particle Track
s = distance along track
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Predicted Charge (μ)

Particle Track
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Predicted Charge (μ)

Particle Track
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Predicted Charge (μ)

• For multi-particle states, predicted charges are 
summed

• Scattered and reflected light is treated separately
(and more crudely: tabulation)

Particle Track
s = distance along track
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One-Track Fit 
Performance

Shown with preivous Super-K 
reconstruction, apfit, for comparison
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apfit

• Tested on a uniform distribution 
of e− between 0 and 1 GeV/c

• Isotropic & random position
(inside FV & charge>200pe)

• Significant improvements in the 
vertex and momentum resolution
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Resolution: 

Muons

fiTQun
apfit

• Tested on a uniform distribution 
of μ− between 0 and 1 GeV/c

• Isotropic & random position
(inside FV & charge>200pe)

• Significant improvements in the 
vertex and momentum resolution

Momentum Resolution

Angular Resolution Vertex Resolution
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Fraction of muons misIDed as electrons
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Single Track Particle ID

• Simple line cut can be 
used to separate muons 
and electrons

• Significantly improved 
particle ID
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apfit

fiTQun
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Test Case: The T2K Experiment

• The T2K experiment searches for neutrino oscillations in a 
high purity νμ beam

• A near detector located 280 m downstream of the target 
measures the unoscillated neutrino spectrum

• The neutrinos travel 295 km to the Super-Kamiokande 
water Cherenkov detector

• For θ13 search:  Super-K looks for the appearance of νe

• For θ23 measurement:  The νμ at the near and far 
detectors are compared to search for νμ disappearance

T2K setupT2K setup

0.75 MW

30 GeV

decay volume

muon monitor

ingrid
super-Kamiokande

ND280

295 km

Super-K Detector J-PARC Accelerator

Near Detector

ν
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Previous T2K νe Results (2012)

• 11 events observed

• sin22θ13 = 0.094+0.053-0.040

• 3.2σ exclusion of θ13=0

• 3.22 ± 0.43 background events

• 1.56 ± 0.20 intrinsic beam νe  

• Irreducible

• 1.26 ± 0.35 νμ neutral current 
(mostly π0)

• Reducible?
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Background Reduction

40% of the νe appearance background was 
from π0 where the 2nd photon was missed

Can fiTQun do better?
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fiTQun π0 Fitter
• Assumes two electron hypothesis rings produced at a common vertex

• 12 parameters (single track fit had 7)

• Vertex (X, Y, Z, T)

• Directions (θ1, φ1, θ2, φ2)

• Momenta (p1, p2)

• Conversion lengths (c1, c2)

• Seeding the fit

• Use result of single-track electron fit

• Scan over various directions with a 50 MeV/c electron and 
evaluate the likelihood function

• Choose the direction that yields the best likelihood

• First, fit while floating only p1 and p2

• Do full 12 parameter fit

Vertex
Photon

Conversions

π0
γ

γ
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π0 Performance
• Previous T2K νe appearance cut:

mπ0 < 105 MeV 

• The π0 mass tail is much smaller 
for fiTQun

• Significant spike at zero 
mass in previous fitting 
algorithm (apfit)

• All events in the spike 
are background

• fiTQun shows no spike

• Lower plot:
π0 rejection efficiency vs
lower γ energy

• fiTQun is more sensitive to 
lower energy photons

T2K νe
Background

apfit

apfit

MC π0 events
0 to 500 MeV/c
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Even Better π0 Rejection
• fiTQun can also use the likelihood 

ratio to distinguish e- from π0

• Even if 2nd photon is 
identified, it may be on the tail 
of the π0 mass resolution

• In this case, the 2-ring 
likelihood will still be preferred

• 2D cut removes 70% more π0 
background

• (2% loss in signal efficiency)

• Improves νe appearance sensitivity 
from 5.0σ to 5.5σ

• More improvements to come!

• Improved PID, ring counting, 
etc.

Background
νμ-(X+π0)

Signal
νe-CCQE

Likelihood Ratio vs π0 Mass
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Other fiTQun Tools: π+ Fitter

• Pions and muons have very similar Cherenkov profiles

• Main difference is the hadronic interactions of pions

• Ring pattern observed is a “kinked” pion trajectory (thin ring with 
the center portion missing)

• First ever π+ / μ separation at Super-K!

electron 
tracks
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tracks
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Other Tools: Multi-ring Fitter
• Fit up to 4 rings using e & π+ hypotheses (soon to be 6!)

• 28 fits in total (every possible e/π+ combination)

• μ  hypothesis is a subset of the π+ hypothesis

• Just need to move the kink point below Cherenkov 
threshold

Super-Kamiokande IV
Run 999999 Sub 0 Event 83 
11-11-21:09:15:39

Inner: 3485 hits, 8065 pe

Outer: 3 hits, 1 pe

Trigger: 0x07

D_wall: 753.1 cm

 

Charge(pe)
    >26.7
23.3-26.7
20.2-23.3
17.3-20.2
14.7-17.3
12.2-14.7
10.0-12.2
 8.0-10.0
 6.2- 8.0
 4.7- 6.2
 3.3- 4.7
 2.2- 3.3
 1.3- 2.2
 0.7- 1.3
 0.2- 0.7
    < 0.2

1 mu-e
decay

0 500 1000 1500 2000
0

220

440

660

880

1100

Times (ns)

μ
π+

e

Event Display Fit Result
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Ring Counting
• Compare best (n)-ring likelihood

         to best (n+1)-ring likelihood

• Ring counting now depends on 
particle ID

• Can test performance on 
atmospheric neutrino sample

• Higher energy neutrinos = more 
rings

• Define a “true ring”

• Any particle >10 MeV/c 
above Cherenkov threshold

• Good performance seen up to 4 rings

• More improvement on the way

1 True Ring

Max Ring Momentum (MeV/c)

ln
(L

2R
 / 

L 1
R

)

Max Ring Momentum (MeV/c)

2 True Rings

ln
(L

2R
 / 

L 1
R

)
ln

(L
3R

 / 
L 2

R
)

Max Ring Momentum (MeV/c)

2 True Rings

ln
(L

3R
 / 

L 2
R

)

Max Ring Momentum (MeV/c)

3 True Rings
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νμ Disappearance: fiTQun vs apfit

 energy [MeV]µνReconstructed 
0 500 1000 1500 2000 2500 30000

1
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 CCQEµν+µν
π CC1µν+µν

 CCotherµν+µν
 CCeν+eν

NC

 energy [MeV]µνReconstructed 
0 500 1000 1500 2000 2500 30000

1
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 CCQEµν+µν
π CC1µν+µν

 CCotherµν+µν
 CCeν+eν

NC

apfit fiTQun

•   fiTQun signal efficiency is higher below 1 GeV

• Significant reduction of NC background due to 
π+ rejection

• NCπ+ background has a very large 
uncertainty (>100%)

• NCπ+ piles up near the oscillation dip

•    Expect significant enhancement in
    θ23 and Δm232 sensitivity

Fraction of apfit
selected events removed:

νμ+ν ̄μ CCQE        4.8%
νμ+ν ̄μ CC1π      21.5%
νμ+ν ̄μ CCother  53.7%
νe+ν ̄e CC            92.1%
NC                     61.2%

Very Large
Uncertainty
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Other Uses for fiTQun

In principle, any Super-K physics
analysis can benefit from fiTQun

Particularly, Proton Decay
Reconstruction requirements are very similar to 

T2K νe appearance requirements
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p → K+ν
• Search via the largest two K+ decay channels

• K+ → μ+ νμ

• Search for 6 MeV photon from nuclear de-excitation

• Very low energy → current algorithm is very 
inefficient

• Only 6% - 10% efficiency (>40% have a 
nuclear photon)

• Large potential improvement if low-energy 
photon detection can be improved

• K+ → π+ π0

• No previous ability to reconstruct π+

• Instead, sum charge in 40 degree cone opposite
the π0 direction

• veto on any other charge in the event

• fiTQun can reconstruct charged pions

• Can also do simultaneous π+γγ fit and compare 
likelihood with background hypotheses
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Future Experiments: Hyper-K

• 0.99 Mton of water (~25 × Super-K fiducial volume)

• Physics goals include proton decay, δCP, θ23 octant, SN-ν, ...

• Same detector design, neutrino beam, backgrounds, etc. 
as Super-K/T2K

• Expect similar improvements in performance

• fiTQun is currently being adapted to the Hyper-K software 

ç√

√√

Masashi Yokoyama (U. Tokyo) Future water Cherenkov detectors
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Example: case of Hyper-K

CPV measurement with comparison of 
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Sensitive to exotic CPV (non-PMNS)

Signal efficiency: 64%
νμ CC: <0.1%, NCπ0: <5%
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DeepCore

Neutrino Telescopes
( IceCube, 

ANTARES, etc.)

IceCube, DeepCore, Pingu, MICA

• Increasing the number of 
photosensors lowers the energy 
threshold

• This is a problem fiTQun is even 
better suited to solve

• Arbitrary phototube locations are 
naturally accommodated

• No reflections from tank walls

• Treatment of non-direct light 
is greatly simplified

• Proton decay, atmospheric ν, ...

Super-K
10 TeV 10 PeV1 TeV100 GeV10 GeV1 GeV100 MeV10 MeV

Borexino
KamLAND

Double Chooz
Daya Bay

SNO

MINOST2K,
K2K

MiniBooNE

OPERA

NOνA

PINGUMICA

AMANDA

DeepCore

IceCube

MICA

Images from
J. Koskinen
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Summary
• fiTQun is a new reconstruction algorithm for large 

Cherenkov Detectors

• Significant improvements are seen over previously used 
algorithms

• Large reductions in poorly understood backgrounds 
for T2K νe appearance and νμ disappearance 
measurements

• fiTQun is beginning to seep into other Super-K analyses

• Atmospheric neutrinos

• Proton Decay

• fiTQun can make important contributions to future 
Cherenkov detectors, such as Hyper-K and PINGU/MICA
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