2018年度研究報告

公募研究 「原始ブラックホール形成過程の精査と その観測的検証」(18H04356)

計画研究A01 「インフレーション宇宙」(15H05888) 連携研究者

Shuichiro Yokoyama (KMI, Nagoya University) (横山 修一郎 (KMI, 名古屋大))

List of submitted papers

• S. Saga, H. Tashiro, S. Yokoyama

"Limits on primordial magnetic fields from direct detection experiments of gravitational background", Phys. Rev. D 98, no.8, 083518(2018), 1807.00561

• T. Sekiguchi, T. Takahashi, H. Tashiro, S. Yokoyama

"Probing primordial non-Gaussianity with 21cm fluctuations from minihalos", JCAP 1902 (2019) 033, 1807.02008

• T. Hiramatsu, S. Yokoyama, T. Fujita, I. Obata → by Hiramatsu-san (Mar. 5th)

"Hunting for statistical anisotropy in tensor modes with B-mode observations", Phys. Rev. D 98, no.8, 083522 (2018), 1808.08044

• H. Niikura, M. Takada, S. Yokoyama, T. Sumi, S. Masaki → by Takada-san (Mar. 7th)

"Earth-mass black holes? – Constraints on primordial black holes with 5-years OGLE microlensing events", accepted in PRD, 1901.07120

• S. Hirano, T. Kobayashi, D. Yamauchi, S. Yokoyama → by Hirano-san (Mar. 8th)

"Constraining DHOST theories with linear growth of matter density fluctuations", 1902.02946

Clustering of primordial BHs

Shuichiro Yokoyama (KMI, Nagoya Univ.)

with Teruaki Suyama (TITECH)

in preparation (arXiv: 1903.xxxx?)

Brief intro. for PBH

Hawking (1971) Carr and Hawking (1974), ...

(also Zeldovich and Novikov (1967))

Primordial Black Hole (PBH)

✓ BHs formed in the early Universe (after inflation)

- direct gravitational collapse of a overdense region
 (formation of a closed Universe) Sasaki-san's talk
- ✓ mass of formed BH ~ Hubble horizon mass at the formation (We focus on the PBH formed in the radiation-dominated era)

$$M = \gamma M_{\rm PH} = \frac{4\pi}{3} \gamma \rho H^{-3} \approx 2.03 \times 10^5 \gamma \left(\frac{t}{1 \text{ s}}\right) M_{\odot}$$

$$t \approx 0.738 \left(\frac{g_*}{10.75}\right)^{-1/2} \left(\frac{T}{1 \text{ MeV}}\right)^{-2} \text{ s,}$$

Various mass BHs could be formed.

(about PBH formation in matter dominated era, → Kohri-san's talk)

Why PBH?

✓ a candidate of dark matter $M > 10^{15} \text{ g}(\sim 10^{-18} M_{\odot})$

✓ a "probe" of inflation model

➔ Tada-san's talk (Mar. 7th)

✓ a source of LIGO events

$M \sim 10 \ M_{\odot}$

Nakamura et al.(1997), Sasaki et al. (2016), Bird et al. (2016), ...

Why clustering?

- "clustering"
 - = spatial distribution of PBHs

We focus on PBH formation during radiation dominated era, ..

→ Spatial distribution of PBHs on super-Hubble scales at the formation

Ali-Haimoud (2018)

✓ DM isocurvature fluctuations
 Tada, SY (2015), Young, Byrnes (2015), ...

Event rate of PBH binary mergers
 Raidal et al. (2017), Bringmann et al. (2018), ...

 ✓ (additional adiabatic pert.??) related to the Hawking radiation...

This work

✓ super-Hubble spatial distribution of PBHs

→ 2-point correlation function / power spectrum of PBH distribution

 $\xi_{\text{PBH}}(\boldsymbol{x}_1, \boldsymbol{x}_2) \qquad \qquad P_{\text{PBH}}(k)$ for $|\boldsymbol{x}_1 - \boldsymbol{x}_2| \gg R$

for $k R \ll 1$

R; comoving Hubble scale at the formation

See, e.g. Matarrese, Luccin, Bonometto (1986) in the context of halo formation

Chisholm (2006), Ali-Haimoud (2018), Franciolini et al. (2018), ... for PBH

Formulation 1

 δ

• Probability that a point (region) "x" becomes PBH

 $P_1(\boldsymbol{x}) = \int [D\delta] P[\delta] \int_{\delta_c}^{\infty} d\alpha \, \delta_D(\delta_{\text{local}}(\boldsymbol{x}) - \alpha)$

Each Hubble patch at the formation

Probability Distribution Function of primordial fluctuations, $\delta({m x})$

"local" smoothed fluctuations

 δ_c

Х

"separate Universe picture"

see e.g., Young, Byrnes, Sasaki (2014)

cf. Halo case -> linear bias

©Y. Tada

Formulation 2

 Probability that two points (regions) "x1" and "x2" become PBHs

$$P_2(\boldsymbol{x}_1, \, \boldsymbol{x}_2) = \int [D\delta] P[\delta] \int_{\delta_c}^{\infty} d\alpha_1 \, \delta_D(\delta_{\text{local}}(\boldsymbol{x}) - \alpha_1) \int_{\delta_c}^{\infty} d\alpha_2 \, \delta_D(\delta_{\text{local}}(\boldsymbol{x}) - \alpha_2)$$

➔ 2 point correlation function;

$$\xi_{\text{PBH}}(\boldsymbol{x}_1, \boldsymbol{x}_2) := rac{P_2(\boldsymbol{x}_1, \boldsymbol{x}_2)}{P_1^2} - 1$$

Roughly, 1

$$\delta_{\text{local}}(\boldsymbol{x}) = \int [D\delta] P[\delta] \int_{\delta_c}^{\infty} d\alpha \, \delta_D(\delta_{\text{local}}(\boldsymbol{x}) - \alpha)$$

$$\delta_D(\boldsymbol{x}) = \int \frac{d\phi}{2\pi} e^{i\phi\boldsymbol{x}},$$

$$P_1(\boldsymbol{x}) = \int [D\delta] P[\delta] \int_{\delta_c}^{\infty} d\alpha \, \int_{-\infty}^{\infty} \frac{d\phi}{2\pi} \exp\left[i\phi \int d^3\boldsymbol{y} W_{\text{local}}(\boldsymbol{x} - \boldsymbol{y})\delta(\boldsymbol{y}) - i\phi \,\alpha\right]$$

$$Z[J] := \int [D\delta] P[\delta] \exp\left[i\int d^3\boldsymbol{y} J(\boldsymbol{y})\delta(\boldsymbol{y})\right] = \left\{\exp\left[i\int d^3\boldsymbol{y} J(\boldsymbol{y})\delta(\boldsymbol{y})\right]\right\}.$$

$$\log Z[J] = \sum_{n=1}^{\infty} \frac{i^n}{n!} \int d^3\boldsymbol{y} d^3\boldsymbol{y}_2 \cdots d^3\boldsymbol{y}_n \xi_{\delta(c)}(\boldsymbol{y}_1, \boldsymbol{y}_2, \cdots, \boldsymbol{y}_n) J(\boldsymbol{y}_1) J(\boldsymbol{y}_2) \cdots J(\boldsymbol{y}_n)$$

$$P_1(\boldsymbol{x}) = \int_{\delta_c}^{\infty} d\alpha \, \int_{-\infty}^{\infty} \frac{d\phi}{2\pi} \exp\left[-i\phi \,\alpha\right] \exp\left[\sum_{n=2}^{\infty} \frac{i^n}{n!} \phi^n \, \xi_{\text{local}(c)}^{(n)}\right] \qquad \text{correlation function} \text{of primordial fluctuations} moments$$

$$P_{1}(\boldsymbol{x}) = \int_{\delta_{c}}^{\infty} d\alpha \, \int_{-\infty}^{\infty} \frac{d\phi}{2\pi} \exp\left[-i\phi\,\alpha\right] \exp\left[\sum_{n=2}^{\infty} \frac{i^{n}}{n!} \phi^{n} \, \xi_{\text{local}(c)}^{(n)}\right]$$
moments

P_2 can be also reduced:

-

$$P_{2}(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}) = \int_{\delta_{c}}^{\infty} d\alpha_{1} \int_{\delta_{c}}^{\infty} d\alpha_{2} \int_{-\infty}^{\infty} \frac{d\phi_{1}}{2\pi} \int_{-\infty}^{\infty} \frac{d\phi_{2}}{2\pi} \exp\left[-i\phi_{1}\alpha_{1} - i\phi_{2}\alpha_{2}\right]$$
$$\times \exp\left[\sum_{n=2}^{\infty} i^{n} \sum_{m=0}^{n} \frac{\phi_{1}^{m}\phi_{2}^{n-m}}{m!(n-m)!} \xi_{\text{local}(c)}^{(n)}(\underbrace{\boldsymbol{x}_{1}, \boldsymbol{x}_{1}, \cdots, \boldsymbol{x}_{1}}_{\text{total } m}, \underbrace{\boldsymbol{x}_{2}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{2}}_{\text{total } n-m})\right]$$

➔ Two-point correlation between moments

variance, skewness, kurtosis, ...

$$P_1(\boldsymbol{x}) = \int_{\delta_c}^{\infty} d\alpha \, \int_{-\infty}^{\infty} \frac{d\phi}{2\pi} \exp\left[-i\phi\,\alpha\right] \exp\left[\sum_{n=2}^{\infty} \frac{i^n}{n!} \phi^n \,\xi_{\text{local}(c)}^{(n)}\right]$$

integration with high-peak approx.

expand with weak non-Gaussianity approx.

$$u := \delta_c / \sigma_{
m local} \gg 1 \;\; {
m where} \;\; \sigma^2_{
m local} := \xi^{(2)}_{
m local(c)}$$

$$\Rightarrow P_1 \approx \frac{e^{-\nu^2/2}}{\sqrt{2\pi\nu}} \left[1 + \sum_{n=3}^{\infty} \frac{1}{2^{n/2}n!} \frac{\xi_{\text{local}(c)}^{(n)}}{\sigma_{\text{local}}^n} H_n\left(\frac{\nu}{\sqrt{2}}\right) \right]$$

P_2 can be reduced in the same way..

Hermite polynomials

$$\begin{array}{l} \textbf{Finally,} \\ \left\{ \xi_{\text{PBH}}(\boldsymbol{x}_{1},\boldsymbol{x}_{2}) := \frac{P_{2}(\boldsymbol{x}_{1},\boldsymbol{x}_{2})}{P_{1}^{2}} - 1 \\ & \sim \frac{\nu^{2}}{\sigma_{\text{local}}^{2}} \xi_{\text{local}(c)}^{(2)}(\boldsymbol{x}_{1},\boldsymbol{x}_{2}) + \frac{1}{2} \frac{\nu^{3}}{\sigma_{\text{local}}^{3}} \left(\xi_{\text{local}(c)}^{(3)}(\boldsymbol{x}_{1},\boldsymbol{x}_{1},\boldsymbol{x}_{2}) + (\boldsymbol{x}_{1}\leftrightarrow\boldsymbol{x}_{2}) \right) \\ \textbf{up to the 4-point,} \\ \textbf{tree-level} \end{array} \right. + \frac{1}{4} \frac{\nu^{4}}{\sigma_{\text{local}}^{4}} \xi_{\text{local}(c)}^{(4)}(\boldsymbol{x}_{1},\boldsymbol{x}_{1},\boldsymbol{x}_{2},\boldsymbol{x}_{2}) + \frac{1}{6} \frac{\nu^{4}}{\sigma_{\text{local}}^{4}} \left(\xi_{\text{local}(c)}^{(4)}(\boldsymbol{x}_{1},\boldsymbol{x}_{2},\boldsymbol{x}_{2},\boldsymbol{x}_{2}) + (\boldsymbol{x}_{1}\leftrightarrow\boldsymbol{x}_{2}) \right) \end{array}$$

PBH correlation function

SY, Suyama in prep.

Up to the primordial 4-point corr.

For $|\boldsymbol{x}_1 - \boldsymbol{x}_2| \gg R$

$$\begin{split} \xi_{\text{PBH}}(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}) &\sim \frac{\nu^{2}}{\sigma_{\text{local}}^{2}} \xi_{\text{local}(c)}^{(2)}(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}) + \frac{1}{2} \frac{\nu^{3}}{\sigma_{\text{local}}^{3}} \left(\xi_{\text{local}(c)}^{(3)}(\boldsymbol{x}_{1}, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}) + (\boldsymbol{x}_{1} \leftrightarrow \boldsymbol{x}_{2}) \right) \\ &+ \frac{1}{4} \frac{\nu^{4}}{\sigma_{\text{local}}^{4}} \xi_{\text{local}(c)}^{(4)}(\boldsymbol{x}_{1}, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{2}) + \frac{1}{6} \frac{\nu^{4}}{\sigma_{\text{local}}^{4}} \left(\xi_{\text{local}(c)}^{(4)}(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \boldsymbol{x}_{2}, \boldsymbol{x}_{2}) + (\boldsymbol{x}_{1} \leftrightarrow \boldsymbol{x}_{2}) \right) \end{split}$$

PBH correlation function

SY, Suyama in prep.

Up to the primordial 4-point corr.

$$\begin{split} \xi_{\text{PBH}}(\pmb{x}_{1},\pmb{x}_{2}) &\sim \left(\frac{\nu^{2}}{\sigma_{\text{local}}^{2}}\xi_{\text{local}(c)}^{(2)}(\pmb{x}_{1},\pmb{x}_{2})\right) + \frac{1}{2}\frac{\nu^{3}}{\sigma_{\text{local}}^{3}}\left(\xi_{\text{local}(c)}^{(3)}(\pmb{x}_{1},\pmb{x}_{1},\pmb{x}_{2}) + (\pmb{x}_{1}\leftrightarrow\pmb{x}_{2})\right) \\ &+ \frac{1}{4}\frac{\nu^{4}}{\sigma_{\text{local}}^{4}}\xi_{\text{local}(c)}^{(4)}(\pmb{x}_{1},\pmb{x}_{1},\pmb{x}_{2},\pmb{x}_{2}) + \frac{1}{6}\frac{\nu^{4}}{\sigma_{\text{local}}^{4}}\left(\xi_{\text{local}(c)}^{(4)}(\pmb{x}_{1},\pmb{x}_{2},\pmb{x}_{2},\pmb{x}_{2}) + (\pmb{x}_{1}\leftrightarrow\pmb{x}_{2})\right) \\ \text{For } |\pmb{x}_{1} - \pmb{x}_{2}| \gg R \end{split}$$

For Gaussian fluctuations,

can never expect the PBH clustering !

Chisholm (2006), Ali-Haimoud (2018),

PBH correlation function with NG

SY, Suyama in prep.

PBH correlation function with NG

SY, Suyama in prep.

PBH correlation function

SY, Suyama in prep.

Can we realize non-zero value??

2-point correlation of
$$\,\sigma^2_{
m local}$$

As primordial fluctuations,
$$\delta(x)$$
,
comoving density fluctuations: $\delta(x) = \Delta(x) = -\frac{4}{9} \frac{R^2 \nabla^2 \mathcal{R}_c(x)}{\mathcal{R}_c(x)}$

Assuming "local-type" non-Gaussianity,

$$\mathcal{R}_{c}(\boldsymbol{x}) = \mathcal{R}_{c,G}(\boldsymbol{x}) + rac{3}{5} f_{ ext{NL}} \left(\mathcal{R}_{c,G}(\boldsymbol{x})^{2} - \langle \mathcal{R}_{c,G}^{2}
angle
ight)$$

→
$$\Delta(\mathbf{x}) \simeq \left(1 + \frac{6}{5} f_{\rm NL} \mathcal{R}_{c,G}(\mathbf{x})\right) \Delta_G(\mathbf{x})$$
→ $\sigma_{\rm local}^2(\mathbf{x}) = \left(1 + \frac{6}{5} f_{\rm NL} \mathcal{R}_c(\mathbf{x})\right)^2 \sigma_{\rm local}^2$
Iarge scale fluctuations of $\sigma_{\rm local}^2$

2-point correlation of
$$\,\sigma^2_{
m local}$$

As primordial fluctuations,
$$\delta(x)$$
,
comoving density fluctuations: $\delta(x) = \Delta(x) = -\frac{4}{9} \frac{R^2 \nabla^2 \mathcal{R}_c(x)}{\mathcal{R}_c(x)}$

Assuming local-type non-Gaussianity,

Primordial 4-point → PBH clustering

For local type non-Gaussianity,

$$\begin{split} \xi_{\text{PBH}}(\boldsymbol{x}_1, \boldsymbol{x}_2) &\approx \nu^4 \left(\frac{6}{5} f_{\text{NL}}\right)^2 \xi_{\mathcal{R}_{c,G}}(\boldsymbol{x}_1, \boldsymbol{x}_2) \\ \text{more general} &= \nu^4 \tau_{\text{NL}} \xi_{\mathcal{R}_c}(\boldsymbol{x}_1, \boldsymbol{x}_2) \end{split}$$

In Fourier space, $P_{\rm PBH}(k) \approx \nu^4 \, \tau_{\rm NL} \, P_{\mathcal{R}_c}(k)$

$$= 10^7 \times \left(\frac{\nu}{10}\right)^4 \left(\frac{\tau_{\rm NL}}{10^3}\right) P_{\mathcal{R}_c}(k) \quad \text{for} \quad k \, R \ll 1$$

- Iarge DM isocurvature perturbations on CMB scales !? Tada, SY (2015), Young, Byrnes (2015), ...
- ✓ large modification of event rate for PBH binary mergers !?

Raidal et al. (2017), Bringmann et al. (2018), ...

Summary

- We investigate the clustering of PBHs
- derive PBH 2-point correl. func. on large scales
- clustering of PBHs could be never induced for Gaussian fluctuations
- Trispectrum (4-point correlation) should be important !

➔ future issues...

- ✓ How about the primordial non-Gaussianity in the inflationary models which can generate PBHs ??
- ✓ Effect on the event rate estimation of PBH binary mergers