Why does the Universe accelerate? -Exhaustive study and challenge for the future, 2019.3.3

# Modeling Evolution of Dark Matter Substructure and Annihilation Boost

#### Nagisa Hiroshima (Univ. of Tokyo & KEK)

S.Ando (Univ. of Amsterdam & Kavli IPMU), T.Ishiyama (Chiba Univ.)

公募研究「ガンマ線と大規模構造のクロス相関による暗黒物質粒子の探査」 研究代表者:安藤真一郎(アムステルダム大学, Kavli IPMU)

## Motivations

# WIMP dark matter

The Fermi–LAT, DES collaboration, 2016 Naturally explains  $10^{-23}$ Ackermann et al. (2015) the relic Nominal sample Median Expected  $10^{-24}$ abundance with 68% Containment  $\left( \mathrm{cm}^{3}\mathrm{s}^{-1} \right) \left( \mathrm{cm}^{3}\mathrm{s}^{-1} \right)^{-22}$ 95% Containment the canonical cross-section Thermal Relic Cross Section (Steigman et al. 2012)  $\langle \sigma v \rangle \sim 3 \times 10^{-26} \text{cm}^3 \text{s}^{-1}$  $10^{-27}$  $b\overline{b}$  WIMP DM mass  $10^{1}$  $10^{2}$  $10^{3}$  $10^{4}$ DM Mass (GeV) should be

 $m_{\rm DM} \sim \mathcal{O}(1) {\rm GeV} - \mathcal{O}(1) {\rm TeV}$ 

Gamma-ray observations are important.
 Only two model parameters.

# Subhalo in WIMP scenario

- WIMP scenario
  predict formation of small scale
   structures down to
  - $10^{-12} 10^{-3} M_{\odot}$
- They should reside in larger halos (i.e., "subhalos").

Ishiyama, Fukushige, Makino, 2008



### The existence of subhalos is expected.

## The importance of subhalo

1.Subhalos contains information about the property of DM.

2.Subhalos on our lines-of-sight enhance the DM annihilation signal (boost factor):



### DM search using cross-correlation

- The DM distribution
  should trace that of
  the galaxy
- Cross-correlation
  with nearby galaxies
  is an efficient probe.
- The constraints differ
  by a factor of ≥ 10
  depending on the
  boost models.



We need to quantify the subhalo boost.

## Estimates of subhalo boost

#### We need to cover

- $M_{\rm halo} \sim 10^{-6} 10^{16} M_{\odot}$
- $z \sim 0 10$

Previous works adopted extrapolation of results from numerical simulations:

mass function 
$$\frac{dN}{dm} \propto m^{-\alpha}$$

Sanchez-Conde & Prada, 2013 200••••••  $M_{\rm min} = 10^{-12} M_{\odot}$ ,  $\alpha = 2$ 100 -----  $M_{\rm min} = 10^{-6} M_{\odot}$ ,  $\alpha = 2$ -----  $M_{\min} = 10^{-12} M_{\odot}, \alpha = 1.9$ -----  $M_{\min} = 10^{-6} M_{\odot}, \alpha = 1.9$ 50 20 Boost 10 12 14 8 10  $Log_{10} M_{200} (M_{\odot})$ 

#### We have developed a new analytical formalism!

# **Analytical Modeling**

### The situation



# **Evolution of subhalos**

- 1.Formation
- 2.Accretion

**EPS formalism** 

- **3. Tidal Stripping** 
  - **Assumptions:**
  - •NFW profile with truncation
    - for host & subhalo
  - •mass-loss occurs in the first orbit of each subhalo  $\dot{\eta}$





### The power of analytical calculations



### The power of analytical calculations



## **Boost Factor**



#### Annihilation signal is boosted by factors

# Update on IGRB limit



## **Extensions & Summary**

### Implementation of the halo-to-halo scatter



We can address many issues:

- too-big-to-fail problem
- microhalo search with PTA (Kashiyama & Oguri 2018)

# Summary

- Precise understanding about the subhalo is important to search particle DM.
- We have developed an analytical formalism to follow the evolution of subhalos. The results agrees well with those of N-body calculations.
- DM annihilation signals can be boosted up to a factor of 10 in cluster scales
- We are now working on the further update to implement the halo-to-halo scatter.