Pure Natural Inflation

Yasunori Nomura

UC Berkeley; LBNL; Kavli IPMU

Cosmic inflation

- Homogeneity
- Flatness

. . .

- Heavy relics (e.g. monopoles)
- Origin of the structure (fluctuation)
- Beginning of spacetime

Cosmic inflation

- Homogeneity
- Flatness

. . .

- Heavy relics (e.g. monopoles)
- Origin of the structure (fluctuation)
- Beginning of spacetime

Inflation as a phenomenon

It is even occurring in our universe now!

... seems to be a rather ubiquitous phenomenon

 \rightarrow It could have happened many times, play many different "roles."

Cosmic inflation in the early stage of our universe

- Homogeneity ?
- Flatness

. . .

- Heavy relics (e.g. monopoles) ?
- Origin of the structure (fluctuation)
- Beginning of spacetime ?

Inflation as a phenomenon

It is even occurring in our universe now!

... seems to be a rather ubiquitous phenomenon

 \rightarrow It could have happened many times, play many different "roles."

A modern view Guth, Kaiser, Y.N., Phys. Lett. **B733** (2014) 112

"Observable inflation" as a **specific** occurrence of the phenomenon ... important in shaping our **own** universe (in the multiverse)

Shocking discovery in 1998

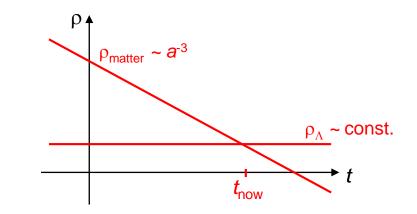
Expansion of the Universe is accelerating!

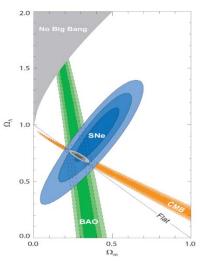
 $\Lambda \neq 0$!

Observationally,

 $\rho_{\Lambda} \sim (10^{-3} \text{ eV})^4$

Its smallness is already hard to understand


... natural size of $\rho_{\Lambda} \equiv \Lambda^2 M_{\text{Pl}}^2 \sim M_{\text{Pl}}^4$ (at the very least ~ TeV⁴)


... Naïve estimate is $O(10^{120})$ too large

Moreover

 $\rho_{\Lambda} \sim \rho_{matter}$

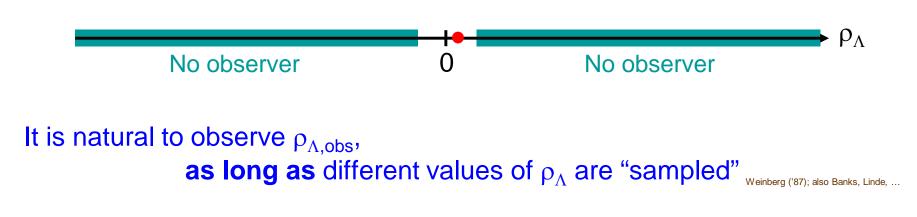
— Why now?

Supernova cosmology project; Supernova search team

Nonzero value completely changes the view!

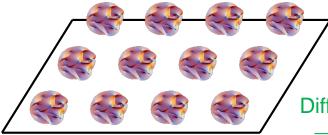
Natural size for vacuum energy $\rho_{\Lambda} \sim M_{\rm Pl}^4$

Unnatural (Note: $\rho_{\Lambda} = 0$ is NOT special from theoretical point of view)

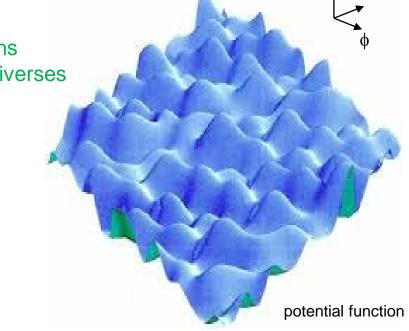

Nonzero value completely changes the view!

Natural size for vacuum energy $\rho_{\Lambda} \sim M_{\rm Pl}^4$

Unnatural (Note: $\rho_{\Lambda} = 0$ is NOT special from theoretical point of view)

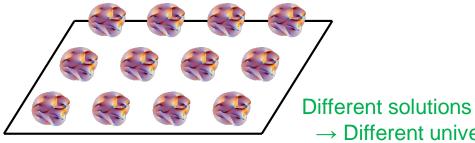

→ Wait!

Is it really unnatural to *observe* this value?

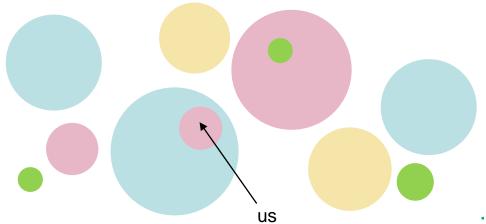

Theory also suggests:

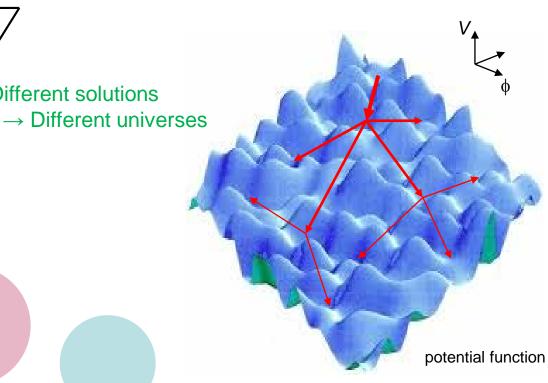
- String theory
 - ... existence of extra dimensions

Different solutions \rightarrow Different universes


https://commons.wikimedia.org/wiki/File:Calabi-Yau-alternate.png

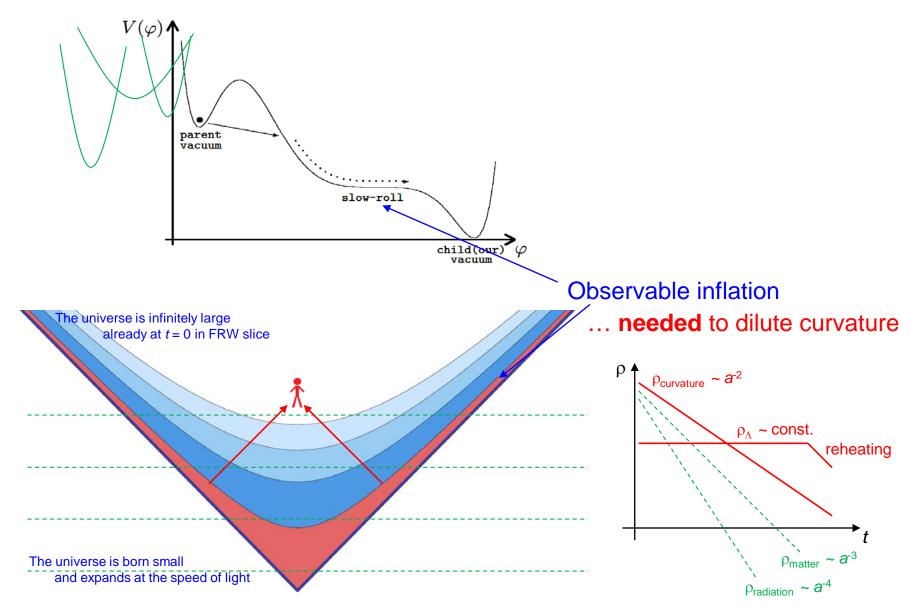
http://journalofcosmology.com/Multiverse9.html


Theory also suggests:

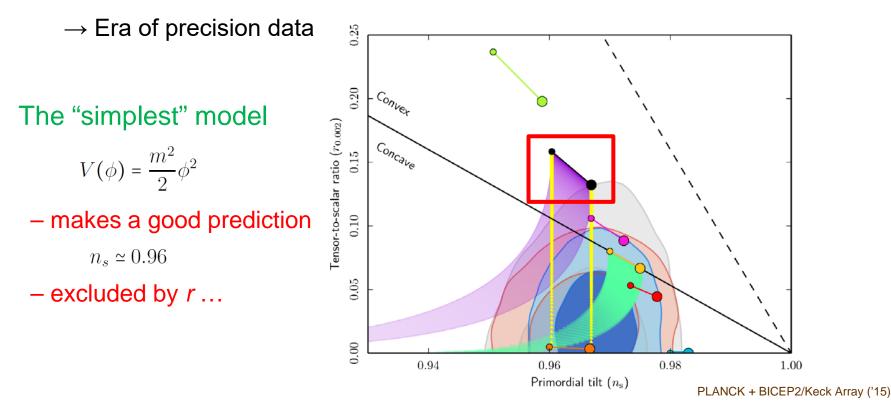

- String theory
 - ... existence of extra dimensions

https://commons.wikimedia.org/wiki/File:Calabi-Yau-alternate.png

- Inflation
 - ... eternal to the future

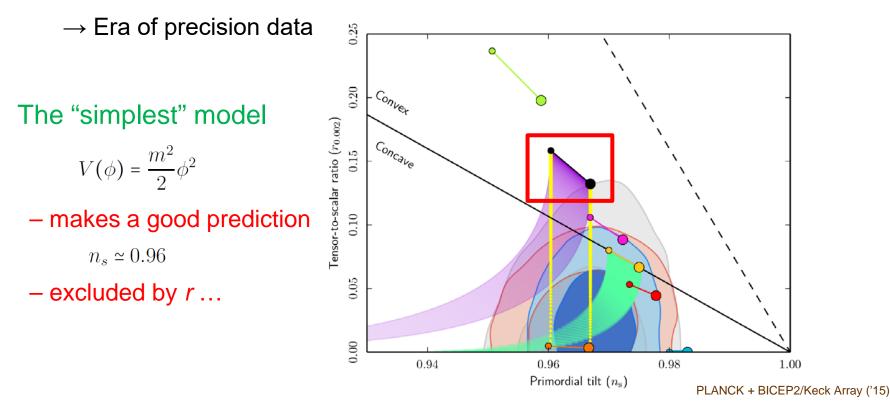


http://journalofcosmology.com/Multiverse9.html


... keep forming new "bubbles"

Our universe is a "bubble" inside a larger structure!

Observable (slow-roll) inflation — status


We are concerned about the predictions for density fluctuation.

- Does the model of inflation need to be significantly complicated?
- Is the agreement of n_s of the ϕ^2 potential with the data "accidental"?

Observable (slow-roll) inflation — status

We are concerned about the predictions for density fluctuation.

- Does the model of inflation need to be significantly complicated?
- Is the agreement of n_s of the ϕ^2 potential with the data "accidental"?

No

Pure Natural Inflation ,

Y.N., Watari, Yamazaki, Phys. Lett. **B776** (2018) 227

_axionic (pseudo Nambu-Goldstone) inflaton

$$\mathcal{L} = \frac{1}{32\pi^2} \frac{\phi}{f} \epsilon^{\mu\nu\rho\sigma} \operatorname{Tr} F_{\mu\nu} F_{\rho\sigma}$$

Physics is invariant under $\theta \equiv \frac{\phi}{f} \rightarrow \theta + 2\pi$

Instanton induced potential

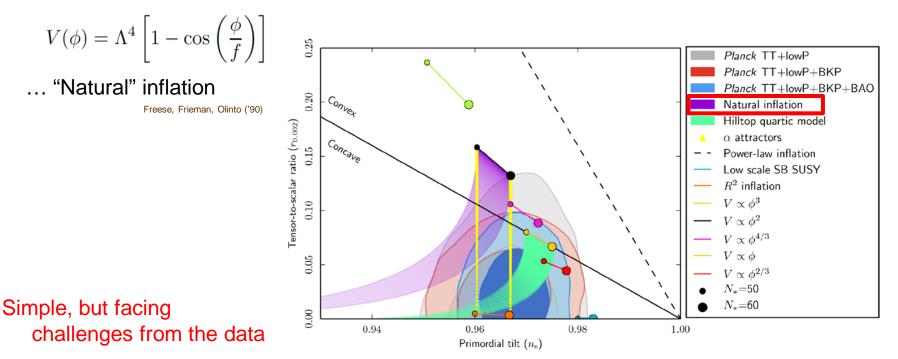
$$V(\phi) = \Lambda^4 \left[1 - \cos\left(\frac{\phi}{f}\right) \right]$$

... "Natural" inflation Freese, Frieman, Olinto ('90)

Consider

Pure Natural Inflation

Y.N., Watari, Yamazaki, Phys. Lett. B776 (2018) 227


_axionic (pseudo Nambu-Goldstone) inflaton

$$\mathcal{L} = \frac{1}{32\pi^2} \frac{\phi}{f} \epsilon^{\mu\nu\rho\sigma} \operatorname{Tr} F_{\mu\nu} F_{\rho\sigma}$$

Physics is invariant under $\theta \equiv \frac{\phi}{f} \rightarrow \theta + 2\pi$

Instanton induced potential

Consider

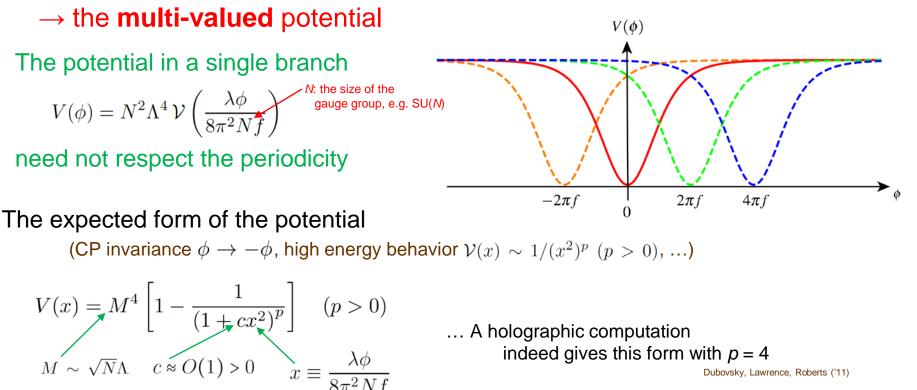
Consider even simpler!

For pure Yang-Milles theory

$$\mathcal{L} = \frac{1}{32\pi^2} \frac{\phi}{f} \,\epsilon^{\mu\nu\rho\sigma} \,\mathrm{Tr} \,F_{\mu\nu}F_{\rho\sigma}$$

instanton induced potential is **not** the right form Witten (79, '80)

How can it be while respecting invariance under $\phi \rightarrow \phi + 2\pi f$?


Consider even simpler!

For pure Yang-Milles theory

$$\mathcal{L} = \frac{1}{32\pi^2} \frac{\phi}{f} \,\epsilon^{\mu\nu\rho\sigma} \,\mathrm{Tr} \,F_{\mu\nu}F_{\rho\sigma}$$

instanton induced potential is **not** the right form Witten (79, 180)

How can it be while respecting invariance under $\phi \rightarrow \phi + 2\pi f$?

Dubovsky, Lawrence, Roberts ('11)

We can parameterize this potential as

$$V(\phi) = M^4 \left[1 - \frac{1}{\left(1 + \left(\frac{\phi}{F}\right)^2\right)^p} \right]$$

where

dynamical scale

$$M \approx \sqrt{N}\Lambda, \qquad F \approx Nf$$

... very difference from the cosine potential!

Expanding as

$$V(\phi) = \sum_{n=1}^{\infty} b_{2n} \left(\frac{\phi}{F}\right)^{2n}$$

this potential gives

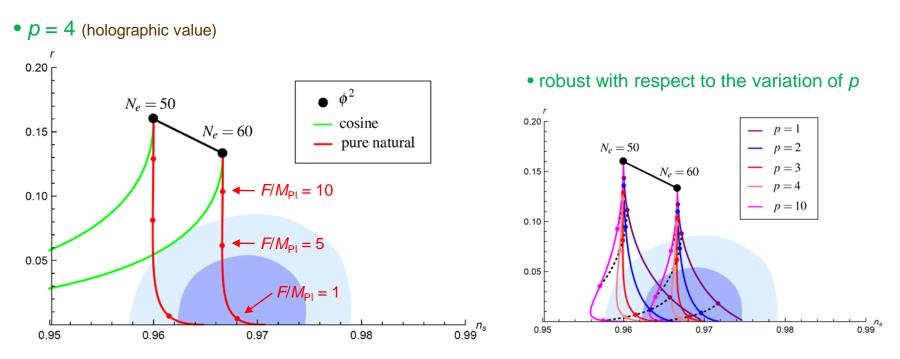
$$\operatorname{sgn}(b_{2n}) = (-1)^{n-1}$$

$$\frac{\frac{b_6}{b_4}}{\frac{b_4}{b_2}} = \frac{2(p+2)}{3(p+1)}, \quad \cdots, \quad \frac{\frac{b_{2n+4}}{b_{2n+2}}}{\frac{b_{2n+2}}{b_{2n}}} = \frac{(n+1)(p+n+1)}{(n+2)(p+n)}, \quad \cdot$$

double ratios of the coefficients: relevant for the predictions

while the cosine potential leads to

$$\operatorname{sgn}(b_{2n}) = (-1)^{n-1}$$
$$\frac{\frac{b_6}{b_4}}{\frac{b_4}{b_2}} = \frac{2}{5}, \qquad \frac{\frac{b_8}{b_6}}{\frac{b_6}{b_4}} = \frac{15}{28}, \qquad \cdots$$

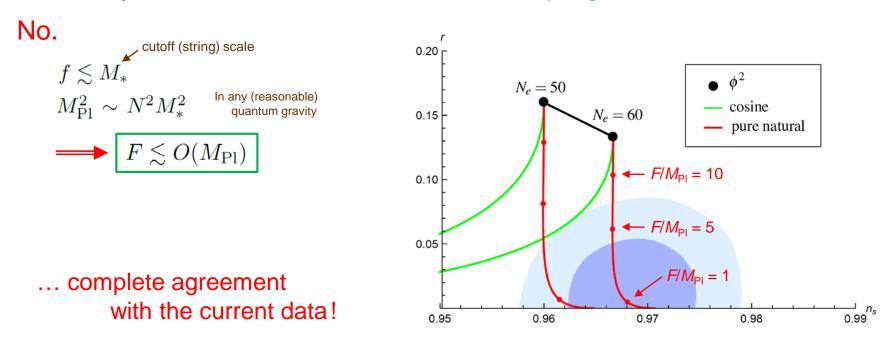

. .

e.g., by equating $(b_6/b_4)/(b_4/b_2)$, we get p = -7/2 < 0

Prediction

... determined by p and F/M_{PI}

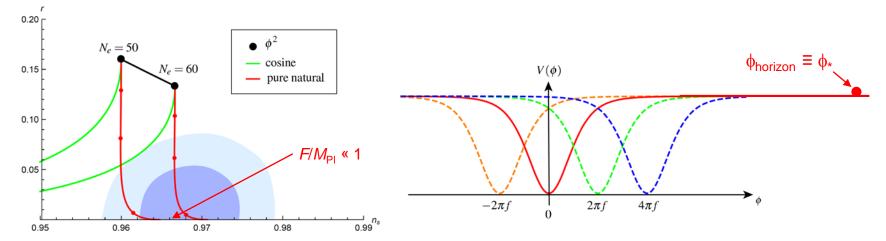
(*M* is determined by the amplitude: $M \sim 10^{16} {
m GeV}$)


... Consistent at the 95% (68%) CL for

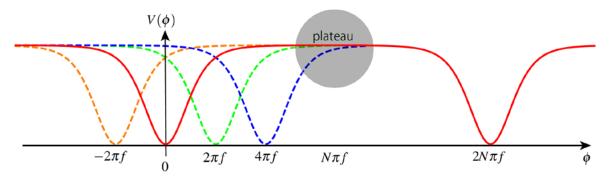
$$\frac{F}{M_{\rm Pl}} \lesssim \begin{cases} 3.3 \ (0.7) \\ 6.8 \ (4.4) \end{cases} \text{ for } N_e = \begin{cases} 50 \\ 60 \end{cases}$$

For $F \gg M_{\rm Pl}$, the prediction reduces to that of the ϕ^2 potential (as it must be)

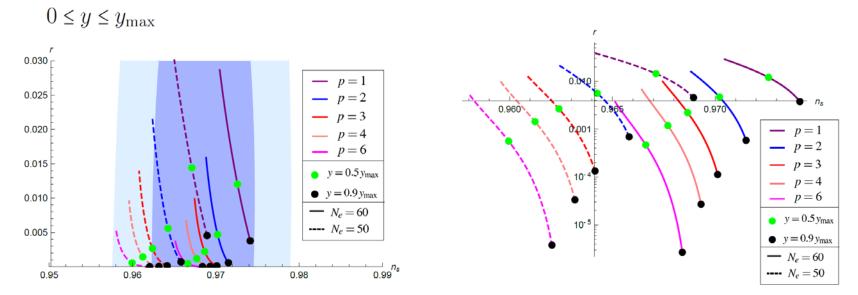
We, however, expect deviations from the ϕ^2 point:


 $F \approx Nf \rightarrow$ Does this mean that *F* can be arbitrary large for *N* » 1?

Large N, however, does help reheating


 $f \approx \frac{F}{N}$ For example, $\mathcal{L} = \frac{1}{32\pi^2} \frac{\phi}{f} \epsilon_{\mu\nu\rho\sigma} \operatorname{Tr} F_{\mathrm{SM}}^{\mu\nu} F_{\mathrm{SM}}^{\rho\sigma}$ $\longrightarrow T_R \sim 10^9 \text{ GeV} \left(\frac{N}{10}\right) \left(\frac{0.5}{F/M_{\mathrm{Pl}}}\right)^{5/2}$

Tensor modes in pure natural inflation $_{Y.N., Yamazaki, Phys. Lett. B780 (2018) 106}$ There are natural lower bounds on r


Effect of finite N

 $V(\phi + 2\pi Nf) = V(\phi)$

... infinitely long plateau not available

We expect $y \equiv \frac{\phi_*}{F}$ to take a generic value in

... Interesting parameter regions can be probed ($r > 10^{-3}$)

A major uncertainty — the value of p

... may be determined/constrained by future lattice computations

$$\bar{b}_4 = \frac{2(p+2)}{3(p+1)}\bar{b}_2^2 \simeq \frac{p+2}{p+1} \times 3.5 \times 10^{-2} \quad \text{where} \quad \begin{aligned} V(\theta) &= \frac{1}{2}\chi\theta^2 \left(1 + \sum_{n=1}^{\infty} b_{2n}\theta^n + \frac{1}{N^{2n}} \left(1 + O\left(\frac{1}{N^2}\right)\right) \right) \\ &= \frac{1}{2}\chi\theta^2 \left(1 + O\left(\frac{1}{N^2}\right)\right) \end{aligned}$$

currently $ar{b}_2=-0.23(3), \quad ar{b}_4\lesssim 0.1$ Bonati, D'Elia, Rossi, Vicari ('16)

... An interesting interplay between fundamental theory and cosmology

Summary

Inflation (accelerating expansion)

- Ubiquitous phenomenon
 - ... occurs multiple times throughout the cosmic history

Observable (slow-roll) inflation

Important in shaping our own universe

... small curvature, the origin of structure

The era of precision measurement

 \ldots the simple ϕ^2 potential strongly disfavored

- \rightarrow Does the inflation model necessarily complicated?
- \rightarrow Is the success of n_s prediction from the ϕ^2 potential accidental?

Pure natural inflation

Simple model in complete agreement with the current data

- Implications for r
- An interplay between fundamental physics and cosmology