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Weinberg’s adiabatic mode (WAM)
ar

X
iv

:a
st

ro
-p

h/
03

02
32

6v
1 

 1
7 

Fe
b 

20
03

UTTG-12-02

Adiabatic Modes in Cosmology

Steven Weinberg1

Theory Group, Department of Physics, University of Texas
Austin, TX, 78712

Abstract

We show that the field equations for cosmological perturbations in Newtonian
gauge always have an adiabatic solution, for which a quantity R is non-zero
and constant in all eras in the limit of large wavelength, so that it can be
used to connect observed cosmological fluctuations in this mode with those at
very early times. There is also a second adiabatic mode, for which R vanishes
for large wavelength, and in general there may be non-adiabatic modes as
well. These conclusions apply in all eras and whatever the constituents of
the universe, under only a mild technical assumption about the wavelength
dependence of the field equations for large wave length. In the absence of
anisotropic inertia, the perturbations in the adiabatic modes are given for
large wavelength by universal formulas in terms of the Robertson–Walker
scale factor. We discuss an apparent discrepancy between these results and
what appears to be a conservation law in all modes found for large wavelength
in synchronous gauge: it turns out that, although equivalent, synchronous
and Newtonian gauges suggest inequivalent assumptions about the behavior
of the perturbations for large wavelength.
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Why important?

Last scattering surface

Planck Collaboration: Constraints on Inflation
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Fig. 8. Marginalized joint 68 % and 95 % CL regions for ns and r at k = 0.002 Mpc�1 from Planck alone and in combination with
BK14 or BK14 plus BAO data, compared to the theoretical predictions of selected inflationary models. Note that the marginalized
joint 68 % and 95 % CL regions assume dns/d ln k = 0.

limits obtained from a ⇤CDM-plus-tensor fit. We refer the inter-
ested reader to PCI15 for a concise description of the inflationary
models studied here and we limit ourselves here to a summary
of the main results of this analysis.

– The inflationary predictions (Mukhanov & Chibisov 1981;
Starobinsky 1983) originally computed for the R2 model
(Starobinsky 1980) to lowest order,

ns � 1 ' �
2
N
, r '

12
N2 , (48)

are in good agreement with Planck 2018 data, confirm-
ing the previous 2013 and 2015 results. The 95 % CL al-
lowed range 49 < N⇤ < 58 is compatible with the R2 ba-
sic predictions N⇤ = 54, corresponding to Treh ⇠ 109 GeV
(Bezrukov & Gorbunov 2012). A higher reheating temper-
ature Treh ⇠ 1013 GeV, as predicted in Higgs inflation
(Bezrukov & Shaposhnikov 2008), is also compatible with
the Planck data.

– Monomial potentials (Linde 1983) V(�) = �M4
Pl (�/MPl)p

with p � 2 are strongly disfavoured with respect to the
R2 model. For these values the Bayesian evidence is worse
than in 2015 because of the smaller level of tensor modes
allowed by BK14. Models with p = 1 or p = 2/3
(Silverstein & Westphal 2008; McAllister et al. 2010, 2014)
are more compatible with the data.

– There are several mechanisms which could lower the pre-
dictions for the tensor-to-scalar ratio for a given potential
V(�) in single-field inflationary models. Important exam-
ples are a subluminal inflaton speed of sound due to a non-
standard kinetic term (Garriga & Mukhanov 1999), a non-
minimal coupling to gravity (Spokoiny 1984; Lucchin et al.

1986; Salopek et al. 1989; Fakir & Unruh 1990), or an ad-
ditional damping term for the inflaton due to dissipation in
other degrees of freedom, as in warm inflation (Berera 1995;
Bastero-Gil et al. 2016). In the following we report on the
constraints for a non-minimal coupling to gravity of the type
F(�)R with F(�) = M2

Pl + ⇠�
2. To be more specific, a quartic

potential, which would be excluded at high statistical signif-
icance for a minimally-coupled scalar inflaton as seen from
Table 5, can be reconciled with Planck and BK14 data for
⇠ > 0: we obtain a 95 % CL lower limit log10 ⇠ > �1.6 with
ln B = �1.6.

– Natural inflation (Freese et al. 1990; Adams et al. 1993) is
disfavoured by the Planck 2018 plus BK14 data with a Bayes
factor ln B = �4.2.

– Within the class of hilltop inflationary models
(Boubekeur & Lyth 2005) we find that a quartic poten-
tial provides a better fit than a quadratic one. In the quartic
case we find the 95 % CL lower limit log10(µ2/MPl) > 1.1.

– D-brane inflationary models (Kachru et al. 2003; Dvali et al.
2001; Garcı́a-Bellido et al. 2002) provide a good fit to
Planck and BK14 data for a large portion of their parame-
ter space.

– For the simple one parameter class of inflationary potentials
with exponential tails (Goncharov & Linde 1984; Stewart
1995; Dvali & Tye 1999; Burgess et al. 2002; Cicoli et al.
2009) we find ln B = �1.0.

– Planck 2018 data strongly disfavour the hybrid model driven
by logarithmic quantum corrections in spontaneously broken
supersymmetric (SUSY) theories (Dvali et al. 1994), with
ln B = �5.0.

18

P⇣(k)|k/aH⇠1

reheating

 Large scale evolution

N＊



Claims

1) What’s the condition for the existence of WAM?

- perturbed LFRW is enough? No, recall solid inflation Enlich et al.(11)

2) Inflation models in perturbed FLRW can be categorized 
    into three classes:

Tanaka & Y.U. (17), Bordin, Tanaka, & Y.U. (in prep.) 

There exists WAM iff dilatation inv. + locality condition (LC) holds.

Type ME: Manifest existence of WAM 

Type HE: Hidden existence of WAM 

Type NE: Non-existence of WAM 

→ Universal IR structure 

Q. Whether LC holds or not?

(No outstanding signal)



Why useful?

Getting an intuition w/o careful inspections 

copyright:webpage you go, girl 

- not living animal

- not dangerous



Zoo of inflation models

ζ(ad)∃

ζ~ζ(ad)

ultra SR

multi-light fields

single clock

w/massive

solid

non-flat 
FLRW

quasi-single

non-local

non-adiabatic 
vacuum

single clock

“Symmetry”



Infrared triangle 

1 Introduction

1.1 The Infrared Triangle

These lectures concern a triangular equivalence relation that governs the infrared (IR)
dynamics of all physical theories with massless particles. Each of the three corners of the
triangle, illustrated in figure 1, represents an old and central subject in physics on which
hundreds or even thousands (in the case of soft theorems) of papers have been written.
Over the past few years we have learned that these three seemingly unrelated subjects are
actually the same subject, arrived at from very di↵erent starting points and expressed in
very di↵erent notations.

Soft
Theorem

Ward
Identity Asymptotic

Symmetry

Vacuum
Transition

Memory
Effect

Fourier
Transform

1

Figure 1: The infrared triangle.

The first corner is the topic of soft theorems. These originated in quantum electrodynam-
ics (QED) in 1937 with the work of Bloch and Nordsieck [1], were significantly developed in
1958 by Low and others [2–6], and were generalized to gravity in 1965 by Weinberg [7]. Soft
theorems characterize universal properties of Feynman diagrams and scattering amplitudes
when a massless external particle becomes soft (i.e., its energy is taken to zero). These
theorems tell us that a surprisingly large — in fact, infinite — number of soft particles are
produced in any physical process, but in a highly controlled manner that is central to the
consistency of quantum field theory.

The second corner is the subject of asymptotic symmetries. This is the study of the
nontrivial exact symmetries or conserved charges of any system with an asymptotic region

1

Strominger+ (13,14, …)
review 1703.05448

Bloch & Nordsieck(1937)

Weinberg(1965)

Christodoulou(1991)

Bondi, Metzner, Sachs(1962)
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IR divergence

Faddeev-Kulish (1970)
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Test particles

Memory Effect
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Permanent displacement of test 
particles produced by radiation burst

from talk slide of A.Ishibashi



Large gauge transformations

GTs Large GTs
Small GTs{
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Gs

GL

g ∈ Gs

g ∈ GL

see, e.g., Harvey(96)

g → 1  ( in |x| → ∞)
g → 1  ( in |x| → ∞)

e.g. Large GTs in U(1) gauge theory

Aμ(x) → A’μ(x) = Aμ(x) + ∂μλ(x) 

Lorentz gauge  ∂μA’μ(x) = 0

- Small GTs   fixed by ∂μ∂μλ(x) = -∂μAμ(x)

- Large GTs  
�(x) =

X

µ1···µn

Cµ1···µnx
µ1 · · ·xµn
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∂μ∂μλ(x) = 0

?



Large GTs in cosmology

Fixing small GTs, e.g., w/
- Time slicing                        φ(t, x) = φ(t) 
- Spatial coordinates  

respectively, simply based on the ratio between these wavenumbers, i.e., kL/kS ≪ 1. As

we will discuss in Sec. 4, in the limit k/aH ≪ 1, a perturbative expansion can break down

in computing some quantity and taking this limit requires a careful treatment.

2.1 Large gauge transformations

Likewise in the discussion about the soft photons and gravitons in the asymptotically

flat spacetime, a large gauge transformation plays a crucial role for a clear understanding

about the soft modes of ζ and γij in an inflationary spacetime. In line with Refs. [1, 2], we

define the large gauge transformation as follows. A local symmetry denotes a symmetry

under a transformation which is parametrized by a spacetime dependent function, while a

global symmetry denotes a symmetry under a transformation by a spacetime independent

function.

Among local symmetry transformations, it is important to make a distinction between

small gauge transformation and large gauge transformations. The former becomes the

identity at the infinity and the latter does not. In Refs. [26, 29], it was shown that the

soft theorem for the photons and the gravitons in the asymptotically flat spacetime can be

derived from the Ward-Takahashi identities for large gauge transformations which do not

vanish on J±.

2.1.1 Dilatation as a large gauge transformation

First, let us clarify the prescription we adopt. In this paper, we use the ADM form of the

line element:

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) , (2.1)

where we introduced the lapse function N , the shift vector N i, and the spatial metric hij .

We determine the time slicing, employing the uniform field gauge:

δφ = 0 . (2.2)

We express the spatial metric hij as

hij = a2e2ζ [eγ ]ij , (2.3)

where γij is set to traceless. As spatial gauge conditions, we impose

∂iγij = 0 . (2.4)

To discuss the soft modes of the primordial perturbations in the spatially flat FRW

background, we consider the large gauge transformations, which do not vanish at the spatial

infinity on a time constant surface. This large gauge transformation was first discussed

in the context of cosmology by Weinberg in Ref. [3]. In the unitary gauge, where the

fluctuation of the inflaton vanishes, we consider, in particular, the dilatation:

xi → esxi , (2.5)

– 4 –

respectively, simply based on the ratio between these wavenumbers, i.e., kL/kS ≪ 1. As

we will discuss in Sec. 4, in the limit k/aH ≪ 1, a perturbative expansion can break down

in computing some quantity and taking this limit requires a careful treatment.

2.1 Large gauge transformations

Likewise in the discussion about the soft photons and gravitons in the asymptotically

flat spacetime, a large gauge transformation plays a crucial role for a clear understanding

about the soft modes of ζ and γij in an inflationary spacetime. In line with Refs. [1, 2], we

define the large gauge transformation as follows. A local symmetry denotes a symmetry

under a transformation which is parametrized by a spacetime dependent function, while a

global symmetry denotes a symmetry under a transformation by a spacetime independent

function.

Among local symmetry transformations, it is important to make a distinction between

small gauge transformation and large gauge transformations. The former becomes the

identity at the infinity and the latter does not. In Refs. [26, 29], it was shown that the

soft theorem for the photons and the gravitons in the asymptotically flat spacetime can be

derived from the Ward-Takahashi identities for large gauge transformations which do not

vanish on J±.

2.1.1 Dilatation as a large gauge transformation

First, let us clarify the prescription we adopt. In this paper, we use the ADM form of the

line element:

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) , (2.1)

where we introduced the lapse function N , the shift vector N i, and the spatial metric hij .

We determine the time slicing, employing the uniform field gauge:

δφ = 0 . (2.2)

We express the spatial metric hij as

hij = a2e2ζ [eγ ]ij , (2.3)

where γij is set to traceless. As spatial gauge conditions, we impose

∂iγij = 0 . (2.4)

To discuss the soft modes of the primordial perturbations in the spatially flat FRW

background, we consider the large gauge transformations, which do not vanish at the spatial

infinity on a time constant surface. This large gauge transformation was first discussed

in the context of cosmology by Weinberg in Ref. [3]. In the unitary gauge, where the

fluctuation of the inflaton vanishes, we consider, in particular, the dilatation:

xi → esxi , (2.5)

– 4 –

Yet, there are infinite number of large GTs

s: constant xi
s ⌘ esxi
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e.g. Spatial dilatation 

Hinterbichler et al. (14)

dl2

a2
= e2⇣(t, x)[e�(t, x)]ijdx

idxj = e2⇣s(t, xs)+2s[e�s(t, xs)]ijdx
idxj
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Weinberg’s adiabatic mode (WAM)

Extension of k=0 mode generated by large GTs 
to soft modes (k ≠ 0)

Weinberg (03)

we will discuss in Sec. 4, in the limit k/aH ⌧ 1, a perturbative expansion can break down

in computing some quantity and taking this limit requires a careful treatment.

2.1 Large gauge transformations

Likewise in the discussion about the soft photons and gravitons in the asymptotically

flat spacetime, a large gauge transformation plays a crucial role for a clear understanding

about the soft modes of ⇣ and �ij in an inflationary spacetime. In line with Refs. [1, 2], we

define the large gauge transformation as follows. A local symmetry denotes a symmetry

under a transformation which is parametrized by a spacetime dependent function, while a

global symmetry denotes a symmetry under a transformation by a spacetime independent

function.

Among local symmetry transformations, it is important to make a distinction between

small gauge transformation and large gauge transformations. The former becomes the

identity at the infinity and the latter does not. In Refs. [26, 29], it was shown that the

soft theorem for the photons and the gravitons in the asymptotically flat spacetime can be

derived from the Ward-Takahashi identities for large gauge transformations which do not

vanish on J
±.

2.1.1 Dilatation as a large gauge transformation

First, let us clarify the prescription we adopt. In this paper, we use the ADM form of the

line element:

ds2 = �N2dt2 + hij(dx
i +N idt)(dxj +N jdt) , (2.1)

where we introduced the lapse function N , the shift vector N i, and the spatial metric hij .

We determine the time slicing, employing the uniform field gauge:

�� = 0 . (2.2)

We express the spatial metric hij as

hij = a2e2⇣ [e� ]ij , (2.3)

where �ij is set to traceless. As spatial gauge conditions, we impose

@i�ij = 0 . (2.4)

To discuss the soft modes of the primordial perturbations in the spatially flat FRW

background, we consider the large gauge transformations, which do not vanish at the spatial

infinity on a time constant surface. This large gauge transformation was first discussed

in the context of cosmology by Weinberg in Ref. [3]. In the unitary gauge, where the

fluctuation of the inflaton vanishes, we consider, in particular, the dilatation:

xi ! esxi , (2.5)

– 4 –

⇣k=0 ! ⇣k=0 � s
<latexit sha1_base64="PrtIFhiMj6b5aAyDI0iRyalB1TY=">AAACB3icbVDLSgMxFL1TX7W+Rl0KEiyCG8uMCLoRim5cVrAP6AxDJk3b0ExmSDJCHbpz46+4caGIW3/BnX9j2s6ith4InJxzL8k5YcKZ0o7zYxWWlldW14rrpY3Nre0de3evoeJUElonMY9lK8SKciZoXTPNaSuRFEchp81wcDP2mw9UKhaLez1MqB/hnmBdRrA2UmAfeo9U4yAbXDkj5OkYzd5PVWCXnYozAVokbk7KkKMW2N9eJyZpRIUmHCvVdp1E+xmWmhFORyUvVTTBZIB7tG2owBFVfjbJMULHRumgbizNERpN1NmNDEdKDaPQTEZY99W8Nxb/89qp7l76GRNJqqkg04e6KUcm77gU1GGSEs2HhmAimfkrIn0sMdGmupIpwZ2PvEgaZxXXqbh35+XqdV5HEQ7gCE7AhQuowi3UoA4EnuAF3uDderZerQ/rczpasPKdffgD6+sXxJ6YlA==</latexit><latexit sha1_base64="PrtIFhiMj6b5aAyDI0iRyalB1TY=">AAACB3icbVDLSgMxFL1TX7W+Rl0KEiyCG8uMCLoRim5cVrAP6AxDJk3b0ExmSDJCHbpz46+4caGIW3/BnX9j2s6ith4InJxzL8k5YcKZ0o7zYxWWlldW14rrpY3Nre0de3evoeJUElonMY9lK8SKciZoXTPNaSuRFEchp81wcDP2mw9UKhaLez1MqB/hnmBdRrA2UmAfeo9U4yAbXDkj5OkYzd5PVWCXnYozAVokbk7KkKMW2N9eJyZpRIUmHCvVdp1E+xmWmhFORyUvVTTBZIB7tG2owBFVfjbJMULHRumgbizNERpN1NmNDEdKDaPQTEZY99W8Nxb/89qp7l76GRNJqqkg04e6KUcm77gU1GGSEs2HhmAimfkrIn0sMdGmupIpwZ2PvEgaZxXXqbh35+XqdV5HEQ7gCE7AhQuowi3UoA4EnuAF3uDderZerQ/rczpasPKdffgD6+sXxJ6YlA==</latexit><latexit sha1_base64="PrtIFhiMj6b5aAyDI0iRyalB1TY=">AAACB3icbVDLSgMxFL1TX7W+Rl0KEiyCG8uMCLoRim5cVrAP6AxDJk3b0ExmSDJCHbpz46+4caGIW3/BnX9j2s6ith4InJxzL8k5YcKZ0o7zYxWWlldW14rrpY3Nre0de3evoeJUElonMY9lK8SKciZoXTPNaSuRFEchp81wcDP2mw9UKhaLez1MqB/hnmBdRrA2UmAfeo9U4yAbXDkj5OkYzd5PVWCXnYozAVokbk7KkKMW2N9eJyZpRIUmHCvVdp1E+xmWmhFORyUvVTTBZIB7tG2owBFVfjbJMULHRumgbizNERpN1NmNDEdKDaPQTEZY99W8Nxb/89qp7l76GRNJqqkg04e6KUcm77gU1GGSEs2HhmAimfkrIn0sMdGmupIpwZ2PvEgaZxXXqbh35+XqdV5HEQ7gCE7AhQuowi3UoA4EnuAF3uDderZerQ/rczpasPKdffgD6+sXxJ6YlA==</latexit><latexit sha1_base64="PrtIFhiMj6b5aAyDI0iRyalB1TY=">AAACB3icbVDLSgMxFL1TX7W+Rl0KEiyCG8uMCLoRim5cVrAP6AxDJk3b0ExmSDJCHbpz46+4caGIW3/BnX9j2s6ith4InJxzL8k5YcKZ0o7zYxWWlldW14rrpY3Nre0de3evoeJUElonMY9lK8SKciZoXTPNaSuRFEchp81wcDP2mw9UKhaLez1MqB/hnmBdRrA2UmAfeo9U4yAbXDkj5OkYzd5PVWCXnYozAVokbk7KkKMW2N9eJyZpRIUmHCvVdp1E+xmWmhFORyUvVTTBZIB7tG2owBFVfjbJMULHRumgbizNERpN1NmNDEdKDaPQTEZY99W8Nxb/89qp7l76GRNJqqkg04e6KUcm77gU1GGSEs2HhmAimfkrIn0sMdGmupIpwZ2PvEgaZxXXqbh35+XqdV5HEQ7gCE7AhQuowi3UoA4EnuAF3uDderZerQ/rczpasPKdffgD6+sXxJ6YlA==</latexit>

Excitation of k=0 mode

Dilatation
s: const

Extension to soft mode kL ≠0 

Excitation of kL mode

(inhomogeneous) 
Dilatation

s(kL): time indep., varies in 1/kL

⇣kL ! ⇣kL � s(kL)
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xi ! es(kL)xi
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WAM

WAM “generically” exists for perturbations around 
LFRW spacetime (linear classical theory). Weinberg (03)

* Similar argument is possible also for tensor mode.



WAM in single field model
field model in linear perturbation theory. In a single field model of inflation with 4D Diff, the
quadratic action can be generically given by

S(2) =
1

2

Z
d⌘

Z
d3xz2(⌘)

⇥
⇣ 02 � c2s(⌘)(@i⇣)

2
⇤
, (2.4)

where the dash denotes the derivative with respect to the conformal time. At the linear order
in perturbation, the presence of the WAM can be easily confirmed by explicitly solving the
mode equation for ⇣k:

⇣ 00
k
+ 2

z0

z
⇣ 0
k
+ c2sk

2⇣k = 0 , (2.5)

as

⇣k ' c1(k) + c2(k)

Z
d⌘

z2(⌘)
, (2.6)

in the limit �csk⌘ ⌧ 1. Here, c1(k) and c2(k) are integration constants, which should be
determined by imposing an initial condition in the limit �csk⌘ � 1. These terms are two
solutions of ⇣k in the soft limit. The function z(⌘) is model-dependent. For a canonical scalar
field, z is given by z2 = 2M2

P
a2" (with c2s = 1). During inflation, " typically stays almost

constant, implying that the second term exponentially decays in the cosmological time. The
first term in Eq. (2.6) is the WAM and the second term is Weinberg’s second mode, which
was stated to approach 0 in the limit k ! 0 in Ref. [2].

Now let us discuss the connection between the WAM of ⇣ and the dilatation, which is
one of the large gauge transformations. The dilatation xi ! esxi with a constant parameter
s introduces the additive constant shift in the k = 0 mode of ⇣ as ⇣0 ! ⇣0 � s + · · · . Since
this transformation is a (large) gauge transformation, it does not leave any change in the
physical configuration. Meanwhile, when we perform a dilatation with a time-independent
but inhomogeneous parameter, which varies in the spatial (comoving) distance 1/kL, this
transformation changes ⇣kL with kL 6= 0 as ⇣kL ! ⇣kL � skL + · · · . Here, the change of
the k = 0 mode under the dilatation with the constant parameter s is extended to that of
the soft mode kL 6= 0. Notice that since this extended transformation can alter the physical
configuration, it is no longer a gauge transformation. The solution of ⇣kL which can be
identified with the additive shift induced by this inhomogeneous dilatation is the WAM .

2.1.3 Various definitions of adiabatic modes
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⌫ and the (time-like) four velocity
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Bottom-line story

Existence of WAM = ζ(ad) is a solution of quantized system

Soft theorem 
for ζ(ad) 

Maldacena(02),  
Creminelli & Zaldarriaga(04),…. Cancellation of 

 IR div. of ζ(ad)

Γ[ζk] = Γ[ζk + ζ(ad)k] 
Γ: effective action

Tanaka & Y.U. (17)

Bordin, Tanaka, & Y.U. (in preparation)

Extension of Weinberg’s argument to non-linear quantum 

Noether charge Q⇣ includes the non-linear terms of ⇣ and '(↵)(t, x) (see, e.g., Eq. (2.21)).
Since the Noether charge is a generator of the dilatation transformation, it satisfies

[Q⇣ , ⇣(x)] = �i�s⇣(x) , (2.19)
h
Q⇣ , '

(↵)(x)
i
= �i�s'

(↵)(x) (2.20)

Using the Fourier components of the fields4, we can rewrite the Noether charge Q⇣ as

Q⇣ = �s⇡k=0 �
s

2

Z
d3k

(2⇡)3
{⇣k, k · @k⇡�k}

�
s

2

X

↵

Z
d3k

(2⇡)3

n
'(↵)
k , (S↵ + k · @k)⇡(↵)�k

o
+O(s2) . (2.21)

The first term of Q⇣ only operates on the k = 0 mode. The Noether charge Q⇣ can diverge
due to the IR modes, because it is an integral over the infinite spatial volume. Here and
hereafter, we neglect higher order terms of O(s2).

In the following, we derive the Ward-Takahashi(WT) identity for the dilatation invari-
ance by rewriting

Q⇣ | i = 0 , (2.22)

where | i denotes a quantum state of the inflationary universe. Here, let us make a closer look
on Eq. (2.22). In this paper, we will show that the condition (2.22) is much more non-trivial
than it may look. When the theory preserves the spatial Diff invariance (without quantum
anomaly), the non-perturbative quantum system is invariant under the dilatation. However,
this does not immediately lead to Eq. (2.22), because the Noether charge Q⇣ only induces
the change of the perturbed dynamical variables (⇣, '(↵)) under the dilatation. Equation

(2.22) states that the quantum state | i remains invariant after transforming the perturbed

dynamical variables under the dilatation as given in Eqs. (2.17) and (2.18). This requires the
invariance of the reduced system described only in terms of the dynamical variables under the
dilatation. In Sec. 4.3.2, we will discuss an example where Eq. (2.22) does not hold, showing
that the Diff invariance of the theory does not necessarily guarantee the dilatation invariance
of the reduced system.

To derive more tractable conditions out of Eq. (2.22), we introduce an eigenstate | ⇣̄c i
which satisfies

⇣̄| ⇣̄c i = ⇣̄c| ⇣̄c i , (2.23)

where ⇣̄ is the homogeneous mode of ⇣(ad), given by

⇣̄ ⌘

R
d3x ⇣(ad)(⌘⇤, x)R

d3x
, (2.24)

4We use the convention of the Fourier transformation:

f(x) =

Z
d3k
(2⇡)3

eik·xf̂(k) , f̂(k) =

Z
d3xe�ik·xf(x) .

Here, the commutation relation for the Fourier modes of ⇣ and ⇡⇣ is given by [⇣k, ⇡k0 ] = i(2⇡)3�(k + k0).
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WT1(k=0)
WT2(others) xi ! es(kL)xi
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Clarification of the underlined assumption

Locality condition
Dilatation inv.



Locality condition?

changes as
[
iQW

ζ (kL), ζpS

]
≃ −δ(kL + kS)spL

. (2.30)

Because of the non-linear term in QW
ζ , the second term in the first line of Eq. (2.29), the change

under the (inhomogeneous) dilatation is not a simple additive shift. However, the contribution
of this non-linear term is suppressed by k3LζkL , compared to the term in the right hand
side of Eq. (2.30). Therefore, we neglect the non-linear contribution. Meanwhile, the non-
linear terms in QW

ζ generate the change of the remaining modes under the (inhomogeneous)
dilatation as

[
iQW

ζ (kL), ζkS

]
≃ s−kL(kS · ∂kS + 3)ζkL+kS (2.31)

[
iQW

ζ (kL), ϕ
(α)
kS

]
≃ s−kL(kS · ∂kS + (3− Sα))ϕ

(α)
kL+kS

, (2.32)

where we approximated kL + kS as kS .
Similarly to the previous subsection, we expand the quantum state |Ψ⟩ in terms of the

eigenstates {| ζkL⟩} which satisfy

ζkL | ζ
c
kL

⟩ = ζckL
| ζckL

⟩ , (2.33)

and

iQW
ζ (kL)| ζcpL

⟩ = spL
δ(kL + pL)

∂

∂ζcpL

| ζcpL
⟩ , (2.34)

as

|Ψ⟩ =
∫

dζckL

∣∣ψ(ζckL
)
∣∣|ζckL

⟩|Ψ⟩ζckL

. (2.35)

Here, |ψ(ζckL
)| describes the weight of the eigenstate | ζcpL

⟩ and |Ψ⟩ζckL

describes the quantum
state of the remaining modes, when the soft mode ζkL is projected into the eigenstate | ζcpL

⟩.
Using this prescription, the extended condition of the second WT identity (2.27) can be

formulated as

iQW
ζ (kL)|Ψ⟩ζcpL

= spL
δ(kL + pL)

∂

∂ζcpL

|Ψ⟩ζcpL
. (2.36)

In the next section, we will show that the condition (2.36), which was obtained by smoothly
extending the WT identity of the dilatation to the soft mode kL ̸= 0, indeed ensures the
presence of the Weinberg’s adiabatic mode generically. In Ref. [6], it was shown that the
condition (2.36) can be understood as the locality condition in the following sense. When
we evaluate Eq. (2.36) in the position space, performing the inverse Fourier transformation,
the condition (2.36) states that performing a dilatation transformation only within a local
patch does not affect on perturbed variables in another local patch which is separated by the
distance 1/kL.

Operating iQW
ζ (kL) on |Ψ⟩, using Eqs. (2.34) and (2.36), and then performing the

integration by parts, we arrive at

iQW
ζ (kL)|Ψ⟩ = −spL

δ(kL + pL)

∫
dζcpL

(
∂

∂ζcpL

∣∣∣ψ(ζcpL
)
∣∣∣

)
|ζcpL

⟩|Ψ⟩ζcpL
. (2.37)

In general, ∂|ψ(ζcpL
)|/∂ζcpL

does not vanish. Therefore, unlike the dilatation generated by
Qζ , the inhomogeneous dilatation does not preserve |Ψ⟩ invariant, yielding iQW

ζ (kL)|Ψ⟩ ̸= 0.
Notice that the discussion in this section applies to fully non-linear orders in perturbation.
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=

Change of the coordinates  
in the local patch 1/kL

1/kL 1/kS 

Change of the short modes 
due to long mode

1/kL 

Just gauge effect locally

(kL << kS)

Tanaka & Y.U. (17)



3 categories of “general” inflation models (in FLRW)

⇣̇ ! 0

Bordin, Tanaka, & Y.U. (in preparation)

Type ME (Manifest Existence): 
WAM exists as the dominant mode of ζkL

WAM exits iff we choose a quantized model w/DI + LC

Type HE (Hidden Existence): 
WAM exists, but is hidden by other modes of ζkL

Type NE (Non Existence): 
WAM does not exist. 

DI + LC?

Yes

No

{
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Classification (in FLRW)

Types DI + LC CRW Cancel. of IR 
div

Type ME ✔ ✔ ✔ ✔ ✔

Type HE ✔ x ✔ x x (*)

Type NE x NA NA x x

⇣kL ' ⇣(ad)kL

⇣̇ ! 0

⇣̇kL ! 0

Bordin, Tanaka, & Y.U. (in preparation)

x:  Leaving possibility that these can be ensured in a different way



Type ME

Ex 1) Single clock model

Ex 2) Single clock model + Massive (HS) excitations

1 DOF in background phase space 

(M> H)

Tanaka & Y.U. (15, 17)

Repeating the same argument, we also find that the WT for the dilatation (2.29) ensures that
⇣(ad)k=0 is a solution.

Next, let us show that when there exists the WAM as a solution for a quantized system,
the selected quantum state satisfies the locality condition. Inserting the WAM into the
correlation functions for arbitrary operators O

a

k = ⇣kS , '
(↵)
k , we obtain the CRWs for these

operators. This implies that how the inhomogeneous dilatation affects on O
a

k is identical to
how the excitation of the WAM affects on them, ensuring the locality condition.

The existence of the WAM does not immediately imply the time conservation of ⇣,
because ⇣(ad) is not necessarily the dominant mode of the soft mode ⇣kL . Before we discuss
this point, let us clarify the definition(s) of the time conservation as

• Weak time conservation: ⇣̇k ! 0 in the limit k/aH ! 0.

• Strict time conservation: ⇣̇k = O(1)⇥
�
csk

aH

�n
⇣(ad)k with a natural number n

The weak time conservation allows to replace n with an arbitrary small but positive parameter.
Only when the strict time conservation holds, the amplitude of the curvature perturbation
⇣k at super Hubble scales can be well approximated by the one at the Hubble crossing time
csk ' akHk, i.e., ⇣k(t) ' ⇣k(tk) for t � tk.

In the presence of the WAM, when the difference between ⇣kL and ⇣(ad)kL
scales as

⇣k � ⇣(ad)k = O(1)⇥

✓
csk

aH

◆
p

⇣(ad)k (3.11)

with a positive number p/a natural number p, the weak/strict conservation hodls. The
analyticity at k = 0 restricts powers of k only to integers. Therefore, for the validity of the
strict time conservation, we need a more stringent condition than the continuity at k = 0,
which is required for the locality condition.

3.3 Cancellation of IR divergence

The loop corrections of a massless field such as the curvature perturbation ⇣ in an inflationary
spacetime can give rise to various IR enhancements [32–40]. Among them, here we show that
the locality condition (2.38) ensures the cancellation of the IR divergence which appears from
the momentum integral. (For a summary of different types of IR enhancements, see Ref. [10].)
In this subsection, following Ref. [7], we show that the IR divergent contribution of the
WAM in loop integrals is manifestly cancelled by considering a quantity which resembles to
observable quantities. Again, simply replacing ⇣kL with ⇣(ad)kL

, we find that the same argument
as in Ref. [7], which discussed Type ME models, can apply both to Type ME and Type HE
models.

The key for the cancellation is considering an operator gR which remains invariant under
the inhomogeneous dilatation, i.e.,

gR(x) = eiQ
W
⇣ (kL)gR(x)e�iQ

W
⇣ (kL) . (3.12)

The genuine gauge invariant operator, introduced in Refs. [13, 14], satisfies this property.
Using the expansion in Eq. (2.37), the correlation function for gR is given by

h |
gR(x1) · · ·

gR(xn)| i

=

Z
d⇣ckL

| (⇣ckL
)|2 ⇣

c
kL

h |
gR(x1) · · ·

gR(xn)| i⇣ckL

, (3.13)

– 15 –

p: natural numberWAM exists &

IR universality of WAM → CRW = CR of ζk 
→ Time conservation of ζk 



Type HE

Ex 1) Multi-light field models (m<<H)

Ex 2) Non-attractor single field model

Repeating the same argument, we also find that the WT for the dilatation (2.29) ensures that
⇣(ad)k=0 is a solution.

Next, let us show that when there exists the WAM as a solution for a quantized system,
the selected quantum state satisfies the locality condition. Inserting the WAM into the
correlation functions for arbitrary operators O

a

k = ⇣kS , '
(↵)
k , we obtain the CRWs for these

operators. This implies that how the inhomogeneous dilatation affects on O
a

k is identical to
how the excitation of the WAM affects on them, ensuring the locality condition.

The existence of the WAM does not immediately imply the time conservation of ⇣,
because ⇣(ad) is not necessarily the dominant mode of the soft mode ⇣kL . Before we discuss
this point, let us clarify the definition(s) of the time conservation as

• Weak time conservation: ⇣̇k ! 0 in the limit k/aH ! 0.

• Strict time conservation: ⇣̇k = O(1)⇥
�
csk

aH

�n
⇣(ad)k with a natural number n

The weak time conservation allows to replace n with an arbitrary small but positive parameter.
Only when the strict time conservation holds, the amplitude of the curvature perturbation
⇣k at super Hubble scales can be well approximated by the one at the Hubble crossing time
csk ' akHk, i.e., ⇣k(t) ' ⇣k(tk) for t � tk.

In the presence of the WAM, when the difference between ⇣kL and ⇣(ad)kL
scales as

⇣k � ⇣(ad)k = O(1)⇥

✓
csk

aH

◆
p

⇣(ad)k (3.11)

with a positive number p/a natural number p, the weak/strict conservation hodls. The
analyticity at k = 0 restricts powers of k only to integers. Therefore, for the validity of the
strict time conservation, we need a more stringent condition than the continuity at k = 0,
which is required for the locality condition.

3.3 Cancellation of IR divergence

The loop corrections of a massless field such as the curvature perturbation ⇣ in an inflationary
spacetime can give rise to various IR enhancements [32–40]. Among them, here we show that
the locality condition (2.38) ensures the cancellation of the IR divergence which appears from
the momentum integral. (For a summary of different types of IR enhancements, see Ref. [10].)
In this subsection, following Ref. [7], we show that the IR divergent contribution of the
WAM in loop integrals is manifestly cancelled by considering a quantity which resembles to
observable quantities. Again, simply replacing ⇣kL with ⇣(ad)kL

, we find that the same argument
as in Ref. [7], which discussed Type ME models, can apply both to Type ME and Type HE
models.

The key for the cancellation is considering an operator gR which remains invariant under
the inhomogeneous dilatation, i.e.,

gR(x) = eiQ
W
⇣ (kL)gR(x)e�iQ

W
⇣ (kL) . (3.12)

The genuine gauge invariant operator, introduced in Refs. [13, 14], satisfies this property.
Using the expansion in Eq. (2.37), the correlation function for gR is given by

h |
gR(x1) · · ·

gR(xn)| i

=

Z
d⇣ckL

| (⇣ckL
)|2 ⇣

c
kL

h |
gR(x1) · · ·

gR(xn)| i⇣ckL

, (3.13)

– 15 –

p: natural numberWAM exists &

IR universality of WAM → CRW, which does not describe 
                             correlation of soft mode.

→ Time conservation of ζk 

Ex 3) Quasi-single field model

field model in linear perturbation theory. In a single field model of inflation with 4D Diff, the
quadratic action can be generically given by

S(2) =
1

2

Z
d⌘

Z
d3xz2(⌘)

⇥
⇣ 02 � c2s(⌘)(@i⇣)

2
⇤
, (2.4)

where the dash denotes the derivative with respect to the conformal time. At the linear order
in perturbation, the presence of the WAM can be easily confirmed by explicitly solving the
mode equation for ⇣k:

⇣ 00
k
+ 2

z0

z
⇣ 0
k
+ c2sk

2⇣k = 0 , (2.5)

as

⇣k ' c1(k) + c2(k)

Z
d⌘

z2(⌘)
, (2.6)

in the limit �csk⌘ ⌧ 1. Here, c1(k) and c2(k) are integration constants, which should be
determined by imposing an initial condition in the limit �csk⌘ � 1. These terms are two
solutions of ⇣k in the soft limit. The function z(⌘) is model-dependent. For a canonical scalar
field, z is given by z2 = 2M2

P
a2" (with c2s = 1). During inflation, " typically stays almost

constant, implying that the second term exponentially decays in the cosmological time. The
first term in Eq. (2.6) is the WAM and the second term is Weinberg’s second mode, which
was stated to approach 0 in the limit k ! 0 in Ref. [2].

Now let us discuss the connection between the WAM of ⇣ and the dilatation, which is
one of the large gauge transformations. The dilatation xi ! esxi with a constant parameter
s introduces the additive constant shift in the k = 0 mode of ⇣ as ⇣0 ! ⇣0 � s + · · · . Since
this transformation is a (large) gauge transformation, it does not leave any change in the
physical configuration. Meanwhile, when we perform a dilatation with a time-independent
but inhomogeneous parameter, which varies in the spatial (comoving) distance 1/kL, this
transformation changes ⇣kL with kL 6= 0 as ⇣kL ! ⇣kL � skL + · · · . Here, the change of
the k = 0 mode under the dilatation with the constant parameter s is extended to that of
the soft mode kL 6= 0. Notice that since this extended transformation can alter the physical
configuration, it is no longer a gauge transformation. The solution of ⇣kL which can be
identified with the additive shift induced by this inhomogeneous dilatation is the WAM .

2.1.3 Various definitions of adiabatic modes

To avoid confusions in the following discussion, we clarify our definitions of the adiabatic
mode as well as the WAM. Let us consider the energy density ⇢ and the isotropic pressure p
which are defined by using the energy-momentum tensor Tµ

⌫ and the (time-like) four velocity
of the matter, uµ. The energy density ⇢ is defined as the eigenvalue of Tµ

⌫ , i.e., Tµ
⌫u⌫ = �⇢uµ

and the isotropic pressure p is defined as the trace part of the projected energy momentum
tensor into the orthogonal direction of u⌫ , i.e., P i

µPi
⌫Tµ

⌫ with Pµ
⌫ = �µ⌫ + uµu⌫ .

In cosmology, the matter content is called adiabatic (even without referring to their
thermodynamic property), when p is non-perturbatively given by a function of ⇢ without
depending on any other quantities, leading to

�p
˙̄p
=

�⇢
˙̄⇢
. (2.7)

– 4 –

second mode grows

Cheng & Wang (09)

Kinney (05),….



Type NE

Dilatation inv.

Locality condition

Types LC Dilatation inv.

Type NE-d x ✔

Type NE-l x x

Noether charge Q⇣ includes the non-linear terms of ⇣ and '(↵)(t, x) (see, e.g., Eq. (2.21)).
Since the Noether charge is a generator of the dilatation transformation, it satisfies

[Q⇣ , ⇣(x)] = �i�s⇣(x) , (2.19)
h
Q⇣ , '

(↵)(x)
i
= �i�s'

(↵)(x) (2.20)

Using the Fourier components of the fields4, we can rewrite the Noether charge Q⇣ as

Q⇣ = �s⇡k=0 �
s

2

Z
d3k

(2⇡)3
{⇣k, k · @k⇡�k}

�
s

2

X

↵

Z
d3k

(2⇡)3

n
'(↵)
k , (S↵ + k · @k)⇡(↵)�k

o
+O(s2) . (2.21)

The first term of Q⇣ only operates on the k = 0 mode. The Noether charge Q⇣ can diverge
due to the IR modes, because it is an integral over the infinite spatial volume. Here and
hereafter, we neglect higher order terms of O(s2).

In the following, we derive the Ward-Takahashi(WT) identity for the dilatation invari-
ance by rewriting

Q⇣ | i = 0 , (2.22)

where | i denotes a quantum state of the inflationary universe. Here, let us make a closer look
on Eq. (2.22). In this paper, we will show that the condition (2.22) is much more non-trivial
than it may look. When the theory preserves the spatial Diff invariance (without quantum
anomaly), the non-perturbative quantum system is invariant under the dilatation. However,
this does not immediately lead to Eq. (2.22), because the Noether charge Q⇣ only induces
the change of the perturbed dynamical variables (⇣, '(↵)) under the dilatation. Equation

(2.22) states that the quantum state | i remains invariant after transforming the perturbed

dynamical variables under the dilatation as given in Eqs. (2.17) and (2.18). This requires the
invariance of the reduced system described only in terms of the dynamical variables under the
dilatation. In Sec. 4.3.2, we will discuss an example where Eq. (2.22) does not hold, showing
that the Diff invariance of the theory does not necessarily guarantee the dilatation invariance
of the reduced system.

To derive more tractable conditions out of Eq. (2.22), we introduce an eigenstate | ⇣̄c i
which satisfies

⇣̄| ⇣̄c i = ⇣̄c| ⇣̄c i , (2.23)

where ⇣̄ is the homogeneous mode of ⇣(ad), given by

⇣̄ ⌘

R
d3x ⇣(ad)(⌘⇤, x)R

d3x
, (2.24)

4We use the convention of the Fourier transformation:

f(x) =

Z
d3k
(2⇡)3

eik·xf̂(k) , f̂(k) =

Z
d3xe�ik·xf(x) .

Here, the commutation relation for the Fourier modes of ⇣ and ⇡⇣ is given by [⇣k, ⇡k0 ] = i(2⇡)3�(k + k0).

– 8 –

changes as
[
iQW

ζ (kL), ζpS

]
≃ −δ(kL + kS)spL

. (2.30)

Because of the non-linear term in QW
ζ , the second term in the first line of Eq. (2.29), the change

under the (inhomogeneous) dilatation is not a simple additive shift. However, the contribution
of this non-linear term is suppressed by k3LζkL , compared to the term in the right hand
side of Eq. (2.30). Therefore, we neglect the non-linear contribution. Meanwhile, the non-
linear terms in QW

ζ generate the change of the remaining modes under the (inhomogeneous)
dilatation as

[
iQW

ζ (kL), ζkS

]
≃ s−kL(kS · ∂kS + 3)ζkL+kS (2.31)

[
iQW

ζ (kL), ϕ
(α)
kS

]
≃ s−kL(kS · ∂kS + (3− Sα))ϕ

(α)
kL+kS

, (2.32)

where we approximated kL + kS as kS .
Similarly to the previous subsection, we expand the quantum state |Ψ⟩ in terms of the

eigenstates {| ζkL⟩} which satisfy

ζkL | ζ
c
kL

⟩ = ζckL
| ζckL

⟩ , (2.33)

and

iQW
ζ (kL)| ζcpL

⟩ = spL
δ(kL + pL)

∂

∂ζcpL

| ζcpL
⟩ , (2.34)

as

|Ψ⟩ =
∫

dζckL

∣∣ψ(ζckL
)
∣∣|ζckL

⟩|Ψ⟩ζckL

. (2.35)

Here, |ψ(ζckL
)| describes the weight of the eigenstate | ζcpL

⟩ and |Ψ⟩ζckL

describes the quantum
state of the remaining modes, when the soft mode ζkL is projected into the eigenstate | ζcpL

⟩.
Using this prescription, the extended condition of the second WT identity (2.27) can be

formulated as

iQW
ζ (kL)|Ψ⟩ζcpL

= spL
δ(kL + pL)

∂

∂ζcpL

|Ψ⟩ζcpL
. (2.36)

In the next section, we will show that the condition (2.36), which was obtained by smoothly
extending the WT identity of the dilatation to the soft mode kL ̸= 0, indeed ensures the
presence of the Weinberg’s adiabatic mode generically. In Ref. [6], it was shown that the
condition (2.36) can be understood as the locality condition in the following sense. When
we evaluate Eq. (2.36) in the position space, performing the inverse Fourier transformation,
the condition (2.36) states that performing a dilatation transformation only within a local
patch does not affect on perturbed variables in another local patch which is separated by the
distance 1/kL.

Operating iQW
ζ (kL) on |Ψ⟩, using Eqs. (2.34) and (2.36), and then performing the

integration by parts, we arrive at

iQW
ζ (kL)|Ψ⟩ = −spL

δ(kL + pL)

∫
dζcpL

(
∂

∂ζcpL

∣∣∣ψ(ζcpL
)
∣∣∣

)
|ζcpL

⟩|Ψ⟩ζcpL
. (2.37)

In general, ∂|ψ(ζcpL
)|/∂ζcpL

does not vanish. Therefore, unlike the dilatation generated by
Qζ , the inhomogeneous dilatation does not preserve |Ψ⟩ invariant, yielding iQW

ζ (kL)|Ψ⟩ ̸= 0.
Notice that the discussion in this section applies to fully non-linear orders in perturbation.

– 9 –



Type NE-d

WAM does not exist, because the dilatation inv. is violated.

Ex 1) No spatil Diff.

Ex 2) Non-flat FLRW background

Ex 3) Solid inflation

Spatial Diff. → Dilatation inv.

Noether charge Q⇣ includes the non-linear terms of ⇣ and '(↵)(t, x) (see, e.g., Eq. (2.21)).
Since the Noether charge is a generator of the dilatation transformation, it satisfies

[Q⇣ , ⇣(x)] = �i�s⇣(x) , (2.19)
h
Q⇣ , '

(↵)(x)
i
= �i�s'

(↵)(x) (2.20)

Using the Fourier components of the fields4, we can rewrite the Noether charge Q⇣ as

Q⇣ = �s⇡k=0 �
s

2

Z
d3k

(2⇡)3
{⇣k, k · @k⇡�k}

�
s

2

X

↵

Z
d3k

(2⇡)3

n
'(↵)
k , (S↵ + k · @k)⇡(↵)�k

o
+O(s2) . (2.21)

The first term of Q⇣ only operates on the k = 0 mode. The Noether charge Q⇣ can diverge
due to the IR modes, because it is an integral over the infinite spatial volume. Here and
hereafter, we neglect higher order terms of O(s2).

In the following, we derive the Ward-Takahashi(WT) identity for the dilatation invari-
ance by rewriting

Q⇣ | i = 0 , (2.22)

where | i denotes a quantum state of the inflationary universe. Here, let us make a closer look
on Eq. (2.22). In this paper, we will show that the condition (2.22) is much more non-trivial
than it may look. When the theory preserves the spatial Diff invariance (without quantum
anomaly), the non-perturbative quantum system is invariant under the dilatation. However,
this does not immediately lead to Eq. (2.22), because the Noether charge Q⇣ only induces
the change of the perturbed dynamical variables (⇣, '(↵)) under the dilatation. Equation

(2.22) states that the quantum state | i remains invariant after transforming the perturbed

dynamical variables under the dilatation as given in Eqs. (2.17) and (2.18). This requires the
invariance of the reduced system described only in terms of the dynamical variables under the
dilatation. In Sec. 4.3.2, we will discuss an example where Eq. (2.22) does not hold, showing
that the Diff invariance of the theory does not necessarily guarantee the dilatation invariance
of the reduced system.

To derive more tractable conditions out of Eq. (2.22), we introduce an eigenstate | ⇣̄c i
which satisfies

⇣̄| ⇣̄c i = ⇣̄c| ⇣̄c i , (2.23)

where ⇣̄ is the homogeneous mode of ⇣(ad), given by

⇣̄ ⌘

R
d3x ⇣(ad)(⌘⇤, x)R

d3x
, (2.24)

4We use the convention of the Fourier transformation:

f(x) =

Z
d3k
(2⇡)3

eik·xf̂(k) , f̂(k) =

Z
d3xe�ik·xf(x) .

Here, the commutation relation for the Fourier modes of ⇣ and ⇡⇣ is given by [⇣k, ⇡k0 ] = i(2⇡)3�(k + k0).

– 8 –

Enlich, Nicholas and Wang (11, 12)

Dilatation = Dilatation described by Qζ

N=N[ζ, …] changes under the dilatation.



Type  NE-l

WAM does not exist, because the dilatation inv. holds, 
but the locality condition is violated.

Ex 1) Non-local theory

Ex 2) Non-adiabatic vacuum Gong & Sasaki (13)

e.g., cs >> 1



Sorting out Zoo more tidily Bordin, Tanaka, & Y.U. (in preparation)



Summary

・IR structure of ζ/γij is much richer than the one for  
gauge theories in asymptotically spacetimes. 

・WAM has IR universality: CRW, Cancellation of IR div.

・”General" inflation models can be categorized into 
ME, HE, or NE 


