Event Generation for the Large Hadron Collider

Bryan Webber Cavendish Laboratory University of Cambridge

Event Generation for the LHC

Future of Collider Physics, KIPMU, 16/07/13

Event Generation for the Large Hadron Collider

- Monte Carlo event generation:
 - theoretical status and limitations
- Recent improvements:
 - perturbative and non-perturbative
- Overview of results:
 - W, Z, top, Higgs, BSM (+jets)
 - ✤ Test cases: top mass, Higgs pT

Monte Carlo Event Generation

Monte Carlo Event Generation

- Aim is to produce simulated (particle-level) datasets like those from real collider events
 - * i.e. lists of particle identities, momenta, ...
 - simulate quantum effects by (pseudo)random numbers
- Essential for:
 - Designing new experiments and data analyses
 - Correcting for detector and selection effects
 - Testing the SM and measuring its parameters
 - Estimating new signals and their backgrounds

A high-mass dijet event

CMS Experiment at LHC, CERN Data recorded: Fri Oct 5 12:29:33 2012 CEST Run/Event: 204541 / 52508234 Lumi section: 32

CMS Experiment at LHC, CERN Data recorded: Fri Oct 5 12:29:33 2012 CEST Run/Event: 204541 / 52508234 Lumi section: 32

• M_{ii} = 5.15 TeV

CMS PAS EXO-12-059

Future of Collider Physics, KIPMU, 16/07/13

QCD Factorization

$$\sigma_{pp \to X}(E_{pp}^2) = \int_0^1 dx_1 dx_2 f_i(x_1, \mu^2) f_j(x_2, \mu^2) \hat{\sigma}_{ij \to X}(x_1 x_2 E_{pp}^2, \mu^2)$$

momentum parton hard process fractions distributions cross section at scale μ^2

- Jet formation and underlying event take place over a much longer time scale, with unit probability
- Hence they cannot affect the cross section
- Scale dependences of parton distributions and hard process cross section are perturbatively calculable, and cancel order by order

Parton Shower Approximation

- Keep only most singular parts of QCD matrix elements:
- **Collinear** $d\sigma_{n+1} \approx \frac{\alpha_{\rm S}}{2\pi} \sum_{i} P_{ii}(z_i, \phi_i) dz_i \frac{d\xi_i}{\xi_i} \frac{d\phi_i}{2\pi} d\sigma_n \qquad \qquad \xi_i = 1 \cos\theta_i$ **Soft** $d\sigma_{n+1} \approx \frac{\alpha_{\rm S}}{2\pi} \sum_{i,j} (-\mathbf{T}_i \cdot \mathbf{T}_j) \frac{p_i \cdot p_j}{p_i \cdot k \, p_j \cdot k} \omega \, d\omega \, d\xi_i \, \frac{d\phi_i}{2\pi} d\sigma_n$ $= \frac{\alpha_{\rm S}}{2\pi} \sum_{i,i} (-\mathbf{T}_i \cdot \mathbf{T}_j) \frac{\xi_{ij}}{\xi_i \,\xi_j} \frac{d\omega}{\omega} d\xi_i \, \frac{d\phi_i}{2\pi} d\sigma_n$ $\approx \frac{\alpha_{\rm S}}{2\pi} \sum_{i,j} (-\mathbf{T}_i \cdot \mathbf{T}_j) \Theta(\xi_{ij} - \xi_i) \frac{d\omega}{\omega} \frac{d\xi_i}{\xi_i} d\sigma_n$ $\int_{i} \frac{\partial e_{ij}}{\partial \theta_{ij}} = \theta_i \qquad \omega = (1 - z_i)E_i$ $i \qquad z_i E_i$

Angular-ordered parton shower (or dipoles)

Event Generation for the LHC

Hadronization Models

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near Λ_{QCD} ~200 MeV, perturbation theory Ctreaks down in hidron ine formed
 - Before that, at scales $Q_0 \sim \text{few x } \Lambda_{QCD}$, there is universal preconfinement of colour
 - Colour, flavour and momentum flows are only locally redistributed by hadronization

Hadronization Models

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near Λ_{QCD} ~200 MeV, perturbation theory Ctreaks down in hidron ine formed
 - Before that, at scales $Q_0 \sim \text{few x } \Lambda_{QCD}$, there is universal preconfinement of colour
 - Colour, flavour and momentum flows are only locally redistributed by hadronization

Hadronization Models

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near Λ_{QCD} ~200 MeV, perturbation theory Preaks down and had mons are formed
 - Before that, at scales $Q_0 \sim \text{few x } \Lambda_{QCD}$, there is universal preconfinement of colour
 - Colour, flavour and momentum flows are only locally redistributed by hadronization

String Hadronization Model

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near Λ_{QCD} ~200 MeV, perturbation theory Preaks down and had one are formed
 - Before that, at scales $Q_0 \sim \text{few x } \Lambda_{QCD}$, there is universal preconfinement of colour
 - Colour flow dictates how to connect hadronic string (width ~ few x Λ_{QCD}) with shower

String Hadronization Model

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near Λ_{QCD} ~200 MeV, perturbation theory **Preaks down and hadrons at** e formed
 - Before that, at scales $Q_0 \sim \text{few x } \Lambda_{QCD}$, there is universal preconfinement of colour
 - Colour flow dictates how to connect hadronic string (width ~ few x Λ_{QCD}) with shower

Cluster Hadronization Model

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near Λ_{QCD} ~200 MeV, perturbation theory Preaks down and had one are formed
 - Before that, at scales $Q_0 \sim \text{few x } \Lambda_{QCD}$, there is universal preconfinement of colour
 - Decay of preconfined clusters provides a direct basis for hadronization

Cluster Hadronization Model

- In parton shower, relative transverse momenta evolve from a high scale Q towards lower values
- At a scale near Λ_{QCD} ~200 MeV, perturbation theory Preaks down and had one are formed
 - Before that, at scales $Q_0 \sim \text{few x } \Lambda_{QCD}$, there is universal preconfinement of colour
 - Decay of preconfined clusters provides a direct basis for hadronization

Cluster Hadronization Model

- Mass distribution of preconfined clusters is universal
- Phase-space decay model for most clusters
- High-mass tail decays anisotropically (string-like)

Hadronization Status

- No fundamental progress since 1980s
 - Available non-perturbative methods (lattice, AdS/QCD, ...) are not applicable
- Less important in some respects in LHC era
 - Jets, leptons and photons are observed objects, not hadrons
- But still important for detector effects
 - Jet response, heavy-flavour tagging, lepton and photon isolation, ...

Multiple parton interactions in same collision

Depends on density profile of proton

- Assume QCD 2-to-2 secondary collisions
 - Need cutoff at low pT
- Need to model colour flow
 - Colour reconnections are necessary

Underlying Event

Event Generation for the LHC

Dijet Mass Distribution

No sign of deviation from Standard Model (yet)

MC Event Generators

HERWIG

http://projects.hepforge.org/herwig/

- Angular-ordered parton shower, cluster hadronization
- ➡ v6 Fortran; Herwig++

http://www.thep.lu.se/~torbjorn/Pythia.html

- Dipole-type parton shower, string hadronization
- ➡ v6 Fortran; v8 C++

SHERPA

http://projects.hepforge.org/sherpa/

- Dipole-type parton shower, cluster hadronization
 - "General-purpose event generators for LHC physics", A Buckley et al., arXiv:1101.2599, Phys. Rept. 504(2011)145

→ C++

Other relevant software (with apologies for omissions)

- Other event/shower generators: PhoJet, Ariadne, Dipsy, Cascade, Vincia
- Matrix-element generators: MadGraph/MadEvent, CompHep, CalcHep, Helac, Whizard, Sherpa, GoSam, aMC@NLO
- Matrix element libraries: AlpGen, POWHEG BOX, MCFM, NLOjet++, VBFNLO, BlackHat, Rocket
- Special BSM scenarios: Prospino, Charybdis, TrueNoir
- Mass spectra and decays: SOFTSUSY, SPHENO, HDecay, SDecay
- Feynman rule generators: FeynRules
- PDF libraries: LHAPDF
- Resummed (p_{\perp}) spectra: ResBos
- Approximate loops: LoopSim
- Jet finders: anti- k_{\perp} and FastJet
- Analysis packages: Rivet, Professor, MCPLOTS
- Detector simulation: GEANT, Delphes
- Constraints (from cosmology etc): DarkSUSY, MicrOmegas
- Standards: PDF identity codes, LHA, LHEF, SLHA, Binoth LHA, HepMC

Sjöstrand, Nobel Symposium, May 2013

Event Generation for the LHC

The Big Question

- If no large signals of BSM physics are seen at LHC, they could still be hiding in large SM backgrounds.
 - Most likely in Higgs, 3rd generation and/or multijets production.
- At what level could we detect them?
 - Depends on improvements in SM (especially QCD) event generation.

Consistency of SM

Future of Collider Physics, KIPMU, 16/07/13
Vacuum Stability

Parton Shower Monte Carlo

• Hard subprocess: $q\bar{q} \rightarrow Z^0/W^{\pm}$

- Leading-order (LO) normalization
 need next-to-LO (NLO)
- Worse for high p_T and/or extra jets need multijet merging

http://mcplots.cern.ch/

Improving Event Generation

Improving Event Generation

Matching & Merging

- Two rather different objectives:
- Matching parton showers to NLO matrix elements, without double counting
 - MC@NLO
 Frixione, BW, 2002
 - POWHEG

Nason, 2004

- Merging parton showers with LO n-jet matrix elements, minimizing jet resolution dependence
 - CKKW Catani, Krauss, Kühn, BW, 2001
 Dipole Lönnblad, 2001
 MLM merging Mangano, 2002

- Compute parton shower contributions (real and virtual) at NLO
 - Generator-dependent
- Subtract these from exact NLO
 - Cancels divergences of exact NLO!
- Generate modified no-emission (LO+virtual) and real-emission hard process configurations
 - Some may have negative weight
- Pass these through parton shower etc.
 - Only shower-generated terms beyond NLO

$$d\sigma_{\rm NLO} = \begin{bmatrix} B(\Phi_B) + V(\Phi_B) - \int \sum_{i} C_i (\Phi_B, \Phi_R) d\Phi_R \end{bmatrix} d\Phi_B + R(\Phi_B, \Phi_R) d\Phi_B d\Phi_R$$

$$\equiv \begin{bmatrix} B + V - \int C d\Phi_R \end{bmatrix} d\Phi_B + R d\Phi_B d\Phi_R$$

$$d\sigma_{\rm MC} = B(\Phi_B) d\Phi_B \left[\Delta_{\rm MC}(0) + \frac{R_{\rm MC}(\Phi_B, \Phi_R)}{B(\Phi_B)} \Delta_{\rm MC}(k_T(\Phi_B, \Phi_R)) d\Phi_R \right]$$

$$\equiv B d\Phi_B \left[\Delta_{\rm MC}(0) + (R_{\rm MC}/B) \Delta_{\rm MC}(k_T) d\Phi_R \right]$$

$$d\sigma_{MC@NLO} = \begin{bmatrix} B + V + \int (R_{MC} - C) d\Phi_R \end{bmatrix} d\Phi_B [\Delta_{MC} (0) + (R_{MC}/B) \Delta_{MC} (k_T) d\Phi_R] \\ + (R - R_{MC}) \Delta_{MC} (k_T) d\Phi_B d\Phi_R$$

finite ≥ 0
MC starting from no emission
MC starting from one emission
Expanding gives NLO result

Event Generation for the LHC

POWHEG matching P Nason, JHEP 11(2004)040

- POsitive Weight Hardest Emission Generator
- Use exact real-emission matrix element to generate hardest (highest relative p_T) emission configurations
 - No-emission probability implicitly modified
 - (Almost) eliminates negative weights
 - Some uncontrolled terms generated beyond NLO
- Pass configurations through parton shower etc

POWHEG matching

P Nason, JHEP 11(2004)040

$$d\sigma_{\rm MC} = B\left(\Phi_B\right) d\Phi_B \left[\Delta_{\rm MC}\left(0\right) + \frac{R_{\rm MC}\left(\Phi_B, \Phi_R\right)}{B\left(\Phi_B\right)} \Delta_{\rm MC}\left(k_T\left(\Phi_B, \Phi_R\right)\right) d\Phi_R\right]$$

$$d\sigma_{\rm PH} = \overline{B} \left(\Phi_B \right) \, d\Phi_B \, \left[\Delta_R \left(0 \right) + \frac{R \left(\Phi_B, \Phi_R \right)}{B \left(\Phi_B \right)} \, \Delta_R \left(k_T \left(\Phi_B, \Phi_R \right) \right) \, d\Phi_R \right]$$

$$\overline{B}(\Phi_B) = B(\Phi_B) + V(\Phi_B) + \int \left[R(\Phi_B, \Phi_R) - \sum_i C_i(\Phi_B, \Phi_R) \right] d\Phi_R$$

$$\Delta_R (p_T) = \exp \left[-\int \mathrm{d}\Phi_R \, \frac{R \left(\Phi_B, \Phi_R\right)}{B \left(\Phi_B\right)} \, \theta \left(k_T \left(\Phi_B, \Phi_R\right) - p_T\right) \right]$$

- NLO with (almost) no negative weights arbitrary NNLO
- High pT always enhanced by $K = \overline{B}/B = 1 + \mathcal{O}(\alpha_{\rm S})$

Event Generation for the LHC

Multijet Merging

- Objective: merge LO n-jet matrix elements^{*}
 with parton showers such that:
 - Multijet rates for jet resolution > Q_{cut} are correct to LO (up to N_{max})
 - Shower generates jet structure below Q_{cut}
 (and jets above N_{max})
 - Leading (and next) Q_{cut} dependence cancels

* ALPGEN or MadGraph, n≤N_{max} CKKW: Catani et al., JHEP 11(2001)063

-L: Lonnblad, JHEP 05(2002)063

MLM: Mangano et al., NP B632(2002)343

Q_{cut}

E

θ

Top quark production

Top quark pairs at LHC

Top Mass

Future of Collider Physics, KIPMU, 16/07/13

 $Evant neneratio 2772 \pm 196 \pm 122 \text{ MeV}$

Top mass & kinematics

Top mass & hadronization

Study dependence of reconstructed mass on "odd" clusters

Top mass & hadronization

Mangano, Top LHC WG, July 2012

Top mass & hadronization

m_{top} vs pt(top)

m_{top}(E+O) - 172.5

 $m_{top}(E+O) - m_{top}(E)$

Dependence of reconstructed mass on "odd" clusters ~ I GeV

- Matched NLO not adequate for >2 extra jets
- Merged multijets better there (for $d\sigma/\sigma$)

Vector boson production

Z⁰ at Tevatron

http://mcplots.cern.ch/

- Absolute normalization: LO too low
- POWHEG agrees with rate and distribution

Z⁰ at LHC

CMS, PRD85(2012)032002

CMS PAS SMP-12-025

- Normalized to data
- POWHEG agrees with distribution (and NNLO)

W asymmetry at LHC

Muon charge asymmetry in *W* decays

• Asymmetry probes parton distributions

$$u\bar{d} \to W^+ \to \mu^+ \nu_\mu \quad \text{vs} \quad d\bar{u} \to W^- \to \mu^- \bar{\nu}_\mu$$

Event Generation for the LHC

W+jets at LHC

• Very good agreement with predictions from merged simulations, while parton shower alone starts to fail for $n_{jet} \ge 2$

LHC Cross Section Summary Standard Model in one slide

Tuesday, March 26, 2013

- Surprisingly good agreement
- No sign of non-Standard-Model phenomena (yet)

But all is not perfect ... Dijet flavours versus jet pt ATLAS, arXiv:1210.0441

Interesting excess of (single) b quark jets

Event Generation for the LHC

Combined matching+merging

- NLO calculations generally refer to inclusive cross sections e.g. $\sigma(W+\ge n \text{ jets})$
- Multijet merging does not preserve them, because of mismatch between exact real-emission and approximate (Sudakov) virtual corrections
- When correcting this mismatch, one can simultaneously upgrade them to NLO
- There remains the issue of merging scale dependence beyond NLO (large logs)

Combined matching+merging

- Many competing schemes (pp, under development)
 - MEPS@NLO (SHERPA) Höche et al., arXiv:1207.5030
 - FxFx (aMC@NLO) Frederix & Frixione, arXiv:1209.6215
 - UNLOPS (Pythia 8) Lönnblad & Prestel, arXiv:1211.7278
 - MatchBox (Herwig++) Plätzer, arXiv:1211.5467
 - MiNLO (POWHEG) Hamilton et al., arXiv:1212.4504
 - GENEVA Alioli, Bauer et al., arXiv:1212.4504
- Some key ideas in LoopSim Rubin, Salam & Sapeta, JHEP1009, 084

UNLOPS: Lönnblad & Prestel, arXiv:1211.7278

Scale dependences almost eliminated

Higgs boson production

Higgs Production by Gluon Fusion

Higgs Production by Gluon Fusion

Higgs Production by Gluon Fusion

Forward jets

- Few central jets
- Central jet veto increases S/B

Higgs Signal and Background Simulation

Process	Generator
ggF, VBF	POWHEG [57, 58]+PYTHIA
$WH, ZH, t\bar{t}H$	PYTHIA
W+jets, Z/γ^* +jets	ALPGEN [59]+HERWIG
$t\bar{t}, tW, tb$	MC@NLO [60]+HERWIG
tqb	AcerMC [61]+PYTHIA
$q\bar{q} \rightarrow WW$	MC@NLO+HERWIG
$gg \to WW$	gg2WW [62]+HERWIG
$q\bar{q} \rightarrow ZZ$	POWHEG [63]+PYTHIA
$gg \rightarrow ZZ$	gg2ZZ [64]+HERWIG
WZ	MadGraph+PYTHIA, HERWIG
$W\gamma$ +jets	ALPGEN+HERWIG
$W\gamma^*$ [65]	MadGraph+PYTHIA
$q\bar{q}/gg ightarrow \gamma\gamma$	SHERPA

ATLAS, Phys.Lett.B716(2012)1

gg→Higgs(+jet)

Higgs boson production total cross sections in pb at the LHC, 8 TeV							
K_R, K_F	1,1	1, 2	2, 1	$1, \frac{1}{2}$	$\frac{1}{2}, 1$	$\frac{1}{2}, \frac{1}{2}$	2,2
HJ-MINLO NLO	13.33(3)	13.49(3)	11.70(2)	13.03(3)	16.53(7)	16.45(8)	11.86(2)
H NLO	13.23(1)	13.28(1)	11.17(1)	13.14(1)	15.91(2)	15.83(2)	11.22(1)
HJ-MiNLO LO	8.282(7)	8.400(7)	5.880(5)	7.864(6)	18.28(2)	17.11(2)	5.982(5)
H LO	5.741(5)	5.758(5)	4.734(4)	5.644(5)	7.117(6)	6.996(6)	4.748(4)

Table 1: Total cross section for Higgs boson production at the 8 TeV LHC, obtained with the HJ-MiNLO and the H programs, both at full NLO level and at leading order, for different scales combinations. The maximum and minimum are highlighted.

UI Duthia

gg→Higgs+jets (8 TeV)

FxFx: Match/merge MC@NLO+Herwig6

Frederix & Frixione, arXiv:1209.6215

gg→Higgs+jets (I3 TeV)

Event Generation for the LHC

1000

500

100

50

10 =

5

1.8

1.6

1.4

1.2

1.0

0.8

0.6

10⁵

 10^{4}

10³

10²

10¹8

1.6

1.4

1.2

1.0

0.8

0.6

0

0

Future of Collider Physics, KIPMU, 16/07/13

t,b mass effects on Higgs pr

VBF Higgs+jets

Matched MC@NLO and POWHEG

Frixione, Torrielli, Zaro, arXiv: 1304.7927

Beyond Standard Model Simulation

BSM Simulation

- Main generators have some BSM models built in
 - Pythia 6 has the most models
 - Herwig++ has careful treatment of SUSY spin correlations and off-shell effects
- Trend is now towards external matrix element generators: FeynRules + MadGraph, ...
- QCD corrections and matching/merging still needed

• Background: mostly Sherpa LO multijet merging

NLO Squark Production

NLO with POWHEG matching to different generators

Gavin et al., arXiv: 1305.4061

 \tilde{q}_i

ATLAS SUSY Search

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: March 26, 2013)

		· · · · · · · · · · · · · · · · · · ·		
	MSUGRA/CMSSM \cdot 0 len + i's + F_{-}	/ =5.8 fb ⁻¹ . 8 TeV [ATLAS-CONE-2012-109]	t 50 TeV õ −õ mass	
	MSUGBA/CMSSM : 1 lep + i's + E			
	Phono model : 0 lon \downarrow i'c \downarrow E	L=5.6 ID , 6 TeV [ATLAS-CONF-2012-104]		ΔΤΙΔς
es	Pheno model : 0 lep + $JS + E_{T,miss}$	L=5.8 fb ⁻ , 8 lev [AILAS-CONF-2012-109]	1.18 lev g mass (<i>m</i> (q) < 2 lev, light χ	
ch	Prierio model . 0 lep + j s + $E_{T,miss}$	L=5.8 fb ⁻⁺ , 8 TeV [ATLAS-CONF-2012-109]	1.38 TeV Q ITIASS (<i>m</i> (g) < 2 TeV, lig	ht_{χ_1}) Preliminary
ear	Gluino med. χ^- (g \rightarrow q $\overline{q}\chi^-$) : 1 lep + J's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1208.4688]	900 GeV g mass $(m(\widetilde{\chi_1}) < 200 \text{ GeV}, m(\widetilde{\chi_2}) = 2$	$(m(\tilde{\chi})+m(\tilde{g}))$
Se	GMSB (INLSP) : 2 lep (OS) + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1208.4688]	1.24 TeV ğ MASS (tanβ < 15)	
NG	GMSB (τ NLSP) : 1-2 τ + j's + E	L=20.7 fb ⁻¹ , 8 TeV [1210.1314]	1.40 TeV \tilde{g} mass (tan β > 18)	
ISN	GGM (bino NLSP) $(\gamma \gamma + E_{T miss})$	L=4.8 fb ⁻¹ , 7 TeV [1209.0753]	1.07 TeV $\widetilde{\mathbf{g}}$ Mass $(m\widetilde{\chi}_1^0) > 50$ GeV)	$\int dt dt (4, 4, 00, 7) th^{-1}$
Icli	GGM (wino NLSP) : γ + lep + $E_{T_{mino}}$	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-144]	619 GeV g mass	Lat = (4.4 - 20.7) fb
1	GGM (higgsino-bino NLSP) : $\gamma + b + E_{T min}^{\gamma,mss}$	L=4.8 fb ⁻¹ , 7 TeV [1211.1167]	900 GeV $\widetilde{\mathbf{g}}$ mass $(m(\widetilde{\chi}^0) > 220 \text{ GeV})$	
	GGM (higgsino NLSP) : Z + jets + $E_{T \text{ miss}}^{1,\text{miss}}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-152]	690 GeV $\widetilde{\mathbf{Q}}$ mass $(m(\widetilde{\mathbf{H}}) > 200 \text{ GeV})$	s = 7, 8 lev
	Gravitino LSP : 'monoiet' + $E_{T mino}$	L=10.5 fb ⁻¹ . 8 TeV [ATLAS-CONF-2012-147]	645 GeV $F^{1/2}$ scale $(m(\tilde{G}) > 10^4 \text{ eV})$	
σ.	$\tilde{a} \rightarrow b \tilde{b} \tilde{v}^0 \cdot 0 \text{ len } \pm 3 \text{ b-i's } \pm F$	/=12.8 fb ⁻¹ 8 TeV [ATLAS-CONE-2012-145]	1.24 TeV $\widetilde{\alpha}$ mass $(m\widetilde{\alpha}^0) < 200 \text{ GeV}$	
en. 10	$a_{-}tt_{0}^{0}: 2$ SS-lop (0-3b-)i's (F	$L_{-20.7}$ fb ⁻¹ 8 ToV [ATLAS CONE 2012 007]	$\frac{1}{24} \frac{1}{100} \frac{1}{2} \frac{1}{100} \frac{1}{10$	8 TeV. all 2012 data
l uii dia	$g \rightarrow t g^{-1} $ $z = 0 - t c p + (0 - 5 b^{-1}) J + L_{T,miss}$	L = 20.7 Hz, 6 TeV [AT LAS-CONF-2013-007]	$\widetilde{\mathbf{a}}$ mass (ally $m(\chi_1)$)	
3ra gi ne	$g \rightarrow it \chi$. 0 lep + 11ulti-j S + $E_{T,miss}$	L=3.6 ID , 6 IEV [ATLAS-CONF-2012-103]	$\vec{n}_{1,00} = \vec{n}_{2,00} = \vec{n}_{1,00} = $	8 TeV, partial 2012 data
	$g \rightarrow i l \chi$. 0 lep + 3 b-J S + $E_{T,miss}$	L=12.8 fb ⁻ , 8 lev [AILAS-CONF-2012-145]	1.15 lev g IIIdSS ($m(\chi_1) < 200 \text{ GeV}$)	
	$\sum_{n \to \infty} DD, D \to D\chi^* : 0 \text{ lep } + 2\text{-D-Jets } + E_{T,\text{miss}}$	L=12.8 fb ⁻⁺ , 8 TeV [ATLAS-CONF-2012-165]	620 GeV D MASS $(m(\chi_1) < 120 \text{ GeV})$	7 TeV, all 2011 data
no n	bb, $b_1 \rightarrow t \tilde{\chi}_1^x$: 2 SS-lep + (0-3b-)j's + $E_{T,miss}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-007]	430 GeV D MASS $(m(\widetilde{\chi}_1^{\pm}) = 2 m(\widetilde{\chi}_1^{\circ}))$	
cti	$\underbrace{\text{tt}}_{T,\text{miss}}$ (light), t \rightarrow b $\tilde{\chi}_{1}^{\pm}$: 1/2 lep (+ b-jet) + $E_{T,\text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [1208.4305, 1209.2102]	167 GeV t mass $(m(\tilde{\chi}_1^0) = 55 \text{ GeV})$	
np	tt (medium), t \rightarrow b $\tilde{\chi}_{1}^{\pm}$: 1 lep + b-jet + $E_{T,miss}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-037]	160-410 GeV $t \max_{1}^{0} (m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV}, m(\tilde{\chi}_{1}^{\pm}) = 150 \text{ GeV})$	
7. 3	tt (medium), t \rightarrow b $\tilde{\chi}_{+}^{\pm}$: 2 lep + $E_{T,\text{miss}}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-167]	160-440 GeV t mass $(m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV}, m(\tilde{t}) - m(\tilde{\chi}_{1}^{\pm}) = 10 \text{ GeV})$	
jei st p	$\widetilde{t}\widetilde{t}$ (heavy), $\widetilde{t} \rightarrow t \widetilde{\chi}^0$: 1 lep + b-jet + $E_{T \text{ miss}}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-037]	200-610 GeV t mass $(m(\tilde{\chi}^0) = 0)$	
d g	$\widetilde{t}\widetilde{t}$ (heavy), $\widetilde{t} \rightarrow t\widetilde{\chi}^0$: 0 lep + 6(2b-)jets + $E_{T \text{ miss}}$	L=20.5 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-024]	320-660 GeV t mass $(m(\tilde{\chi}_{4}^{0}) = 0)$	
31 di	\widetilde{t} (natural GMSB) : Z(\rightarrow II) + b-jet + E	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-025]	500 GeV $t \text{ mass}$ $(m(\tilde{\chi}^0) > 150 \text{ GeV})$	
	$\widetilde{t}_{0}\widetilde{t}_{0},\widetilde{t}_{0}\rightarrow\widetilde{t}_{1}+Z:Z(\rightarrow II)+1$ lep + b-jet + $E_{-}^{I,miss}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-025]	520 GeV \widetilde{t}_{α} mass $(m(\widetilde{t}_{\alpha}) = m(\widetilde{\chi}^0) + 180 \text{ GeV})$	
	$\widetilde{I} \widetilde{I} \rightarrow \widetilde{P}^{0}$: 2 lep + E_{-}	L=4.7 fb ⁻¹ . 7 TeV [1208.2884]	85-195 GeV $\prod_{n=1}^{\infty} \max_{m(\tilde{\chi}^0)} = 0$	
t	$\widetilde{\gamma}^+\widetilde{\gamma}^-\widetilde{\gamma}^+ \rightarrow \widetilde{W}(\widetilde{\gamma}) \cdot 2 \text{ lep } + F$	L=4.7 fb ⁻¹ . 7 TeV [1208.2884]	110-340 GeV $\widetilde{\chi}^{\pm}$ Mass $(m(\widetilde{\chi}^0) < 10 \text{ GeV}, m(\widetilde{\chi}) = \frac{1}{2}(m(\widetilde{\chi}^{\pm}) + m(\widetilde{\chi}^0)))$	
M.	$\chi_{1}\chi_{2}\chi_{1}$ χ_{1} χ_{1} χ_{1} χ_{1} χ_{2} $\chi_$	/=20.7 fb ⁻¹ 8 TeV [ATI AS-CONE-2013-028]	180-330 GeV $\tilde{\chi}^{\pm}$ MASS $(m(\tilde{\chi}^{0}) < 10 \text{ GeV} m(\tilde{\chi}^{0}) = (m(\tilde{\chi}^{\pm}) + m(\tilde{\chi}^{0})))$	
Ш iē	$\tilde{\gamma}^{\pm}\tilde{\gamma}^{0} \rightarrow \tilde{I} \tilde{\chi} \tilde{I} (\tilde{\chi} \tilde{\chi}) \tilde{\chi} \tilde{I} (\tilde{\chi} \tilde{\chi}) \cdot 3 \text{ len } + F$		$\widetilde{\nabla}^{\pm} mass = (m(\lambda_1)^2 + m(\lambda_2)^2 + m(\lambda_1)^2 + m(\lambda_1)^2)$	
	$\lambda_1 \lambda_2 \sim \lambda_1^{(1)} \sim \lambda_2^{(1)} \sim \lambda_1^{(1)} \sim \lambda_2^{(1)} \sim \lambda_2^{($	L=20.7 fb , 6 fev [ATLAS-CONF-2013-035]	$\chi_1 = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n$	s above)
	$\chi, \chi \rightarrow W \chi \Sigma \chi$. Step + $E_{T,miss}$	L=20.7 ID , 8 TEV [ATLAS-CONF-2013-035]	$\widetilde{\chi_1} = m(\chi_2), m(\chi_1) = 0, \text{ siepton's decoupled}$	
s	Direct χ_1 pair prod. (AIVISB) : long-lived χ_1	L=4.7 fD , 7 lev [1210.2852]	220 GeV χ_1 mass $(1 < \tau(\chi_1) < 10 \text{ ms})$	
·liv cle	Stable g, R-hadrons : low β , $\beta\gamma$	L=4.7 fb ⁻ , 7 lev [1211.1597]	985 Gev g mass	
ng-	GINSB, stable τ : low β	L=4.7 fb ⁻¹ , 7 TeV [1211.1597]	\sim^{0} \sim^{0} \sim^{0} \sim^{0}	
pa	$GMSB, \tilde{\chi} \rightarrow \gamma G$: non-pointing photons	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2013-016]	230 GeV χ_1 Mass $(0.4 < \tau(\chi_1) < 2 \text{ ns})$	
	$\chi_{+} \rightarrow qq\mu (RPV) : \mu + heavy displaced vertex$	L=4.4 fb ⁻¹ , 7 TeV [1210.7451]	700 GeV Q Mass (1 mm < $c\tau$ < 1 m, \tilde{g} decoupled)	
	LFV : pp $\rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu$ resonance	L=4.6 fb ⁻¹ , 7 TeV [1212.1272]	1.61 TeV v_{τ} mass $(\lambda'_{311}=0.10)$, λ ₁₃₂ =0.05)
	LFV : pp $\rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e(\mu) + \tau$ resonance	L=4.6 fb ⁻¹ , 7 TeV [1212.1272]	1.10 TeV \tilde{v}_{τ} mass $(\lambda_{311}^{i}=0.10, \lambda_{1(2)33}^{i}=0.10, \lambda_{$.05)
Bilinear RPV CMSSM : 1 lep + 7 j's + $E_{T,t}$	Bilinear RPV CMSSM : 1 lep + 7 j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-140]	1.2 TeV $\tilde{q} = \tilde{g}$ mass ($c\tau_{LSP} < 1$ mm)	
P 2	$\widetilde{\chi}^+ \widetilde{\chi}^-, \widetilde{\chi}^+ \rightarrow W \widetilde{\chi}^0, \widetilde{\chi}^0 \rightarrow eev_{\mu}, e\mu v_{\mu} : 4 lep + E_{T miss}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-036]	760 GeV $\widetilde{\chi}_{1}^{+}$ MASS $(m(\widetilde{\chi}_{1}^{0}) > 300 \text{ GeV}, \lambda_{121} > 0)$	
Ц	$\widetilde{\chi}_{\tau} \widetilde{\chi}_{\tau},, \widetilde{\chi}_{\tau}^{01} \rightarrow \tau \tau v_{\sigma}, e \tau v_{\tau} : 3 \text{ lep } + 1\tau + E_{\tau \text{ miss}}$	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-036]	350 GeV $\tilde{\chi}_{4}^{+}$ MASS $(m(\tilde{\chi}_{2}^{0}) > 80 \text{ GeV}, \lambda_{133} > 0)$	
	$\tilde{q} \rightarrow qqq$: 3-iet resonance bair	L=4.6 fb ⁻¹ , 7 TeV [1210.4813]	666 Gev ĝ mass	
	$\tilde{q} \rightarrow \tilde{t}\tilde{t}, \tilde{t} \rightarrow bs$: 2 SS-lep + (0-3b-)i's + E	L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-007]	880 GeV $\widetilde{\mathbf{q}}$ Mass (any $m(\widetilde{\mathbf{t}})$)	
	Scalar gluon : 2-iet resonance pair	L=4.6 fb ⁻¹ , 7 TeV [1210.4826]	100-287 GeV SQLUON MASS (incl. limit from 1110.2693)	
WIM	P interaction (D5, Dirac χ) : 'monojet' + E	L=10.5 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-147]	704 GeV M^* SCale (<i>m</i> < 80 GeV limit of < 687 Ge	V for D8)
	T,miss			
		10 ⁻	' 1	10

*Only a selection of the available mass limits on new states or phenomena shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.

Mass scale [TeV]

Event Generation for the LHC

ATLAS Exotica Search

ATLAS Exotics Searches* - 95% CL Lower Limits (Status: HCP 2012)

	Large ED (ADD) : monoiet + E			
	Large ED (ADD) : monophoton $\pm E$	L=4.7 id, 7 rev [1210.4491]	$4.37 \text{ TeV} M_D$	0-2)
S	Large ED (ADD) : monophoton + $L_{T,miss}$	L=4.6 fD , 7 lev [1209.4625]	1.93 TeV M _D (0=2)	ATLAS
ИС	UED : diploton + F	L=4.7 ID, 7 IEV [1211.1150]	$4.16 \text{ lev} M_S (1)$	Preliminary
ISI	S^{1}/Z ED : dilepton m	L=4.6 ID, 7 IEV [AILAS-CONF-2012-072]		$\sim B^{-1}$
en	$S/Z_2 ED$. dilepton, m_{\parallel} BS1 : diphoton & dilepton m	L=4.3-5.0 fb ⁻¹ 7 TeV [1209.2555]	4.71 lev W _{KK}	k/M = 0.1
in'	BS1 : 77 resonance $m_{\gamma\gamma/\parallel}$	L = 4.75.0 10 , 7 16V [1210.0505]	2.23 Rev Graviton mass $(k/M = 0.1)$	$S(n_{P_{1}} - 0.1)$
n d	$RS1 \cdot WW$ resonance m_{π}	L = 1.0 IB, $T TeV [1203.0710]$	1 23 TeV Graviton mass (k/M_{\odot})	$Ldt = (1.0 - 13.0) \text{ fb}^{-1}$
tra	RS q \rightarrow tt (BR=0.925) : tt \rightarrow l+jets, m	/ =4.7 fb ⁻¹ 7 TeV [ATLAS-CONE-2012-136]		J ⁻ (⁻) ⁻
Х	ADD BH $(M_{-1}, M_{-}=3)$ SS dimuon N	$l = 1.3 \text{ fb}^{-1}$ 7 TeV [1111 0080]	1.25 TeV $M_{\rm e}$ (δ =6)	s = 7, 8 TeV
	ADD BH $(M_{TH}/M_{D}=3)$: leptons + jets, Σp	L=1.0 fb ⁻¹ , 7 TeV [1204.4646]	15 TeV $M_{\rm p}$ (δ =6)	
	Quantum black hole : dijet, F (m_{ij})	L=4.7 fb ⁻¹ . 7 TeV [1210.1718]	4.11 TeV M _D (8	()=6)
	qqqq contact interaction : $\chi(m_{\perp})$	L=4.8 fb ⁻¹ . 7 TeV [ATLAS-CONF-2012-038]	7.8 Ti	eV A
0	ggll CI : ee & μμ, m	L=4.9-5.0 fb ⁻¹ . 7 TeV [1211.1150]		13.9 TeV Λ (constructive int.)
0	uutt CI : SS dilepton + jets + $E_{T miss}$	L=1.0 fb ⁻¹ , 7 TeV [1202.5520]	1.7 TeV Λ	
	$Z'(SSM): m_{ee/uu}$	L=5.9-6.1 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-129]] 2.49 TeV Z' mass	
	Z' (SSM) : m_{rr}	L=4.7 fb ⁻¹ , 7 TeV [1210.6604]	1.4 TeV Z' mass	
=	W' (SSM) : m_{Telu}	<i>L</i> =4.7 fb ⁻¹ , 7 TeV [1209.4446]	2.55 TeV W' mass	
>	W' $(\rightarrow tq, g_{p}=1)$: m_{tq}^{μ}	<i>L</i> =4.7 fb ⁻¹ , 7 TeV [1209.6593]	430 GeV W' mass	
	$W'_{R} (\rightarrow tb, SSM) : m_{tb}$	L=1.0 fb ⁻¹ , 7 TeV [1205.1016]	1.13 TeV W' mass	
	W* : <i>m</i> _{T.e/u}	L=4.7 fb ⁻¹ , 7 TeV [1209.4446]	2.42 TeV W* mass	
\sim	Scalar LQ pair (β =1) : kin. vars. in eejj, evjj	L=1.0 fb ⁻¹ , 7 TeV [1112.4828]	660 Gev 1 st gen. LQ mass	
LO LO	Scalar LQ pair (β =1) : kin. vars. in µµjj, µvjj	L=1.0 fb ⁻¹ , 7 TeV [1203.3172]	685 GeV 2 nd gen. LQ mass	
	Scalar LQ pair (β=1) : kin. vars. in ττjj, τvjj	L=4.7 fb ⁻¹ , 7 TeV [Preliminary]	538 GeV 3 rd gen. LQ mass	
S	4^{th} generation : t't' \rightarrow WbWb	L=4.7 fb ⁻¹ , 7 TeV [1210.5468]	656 GeV t' mass	
ark	4^{m} generation : b'b'($T_{5/3}T_{5/3}$) \rightarrow WtWt	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-130]	670 GeV b' (T _{5/3}) mass	
nk	New quark b' : b'b' \rightarrow Zb+X, m _{zb}	L=2.0 fb ⁻¹ , 7 TeV [1204.1265] 4	00 GeV b' mass	
~	Top partner : TT \rightarrow tt + A ₀ A ₀ (dilepton, M ₁₂)	<i>L</i> =4.7 fb ⁻¹ , 7 TeV [1209.4186]	483 GeV T mass ($m(A_0) < 100 \text{ GeV}$)	
le\	Vector-like quark : CC, mivq	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]	1.12 TeV VLQ mass (charge -1/3,	coupling $\kappa_{qQ} = v/m_Q$
<	Vector-like quark : NC, m _{ilq}	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]	1.08 TeV VLQ mass (charge 2/3, c	$coupling \kappa_{qQ} = v/m_Q)$
л;	Excited quarks γ -jet resonance, m	L=2.1 fb ⁻¹ , 7 TeV [1112.3580]	2.46 TeV q* mass	
eri T	Excited quarks : dijet resonance, m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-148]	3.84 TeV q* mas	SS
ш-		L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-146]	2.2 TeV I* mass (Λ = m	n(l*))
т	Iechni-hadrons (LSTC) : dilepton, $m_{ee/\mu\mu}$	L=4.9-5.0 fb ⁻¹ , 7 TeV [1209.2535]	850 GeV $\rho_{\rm T}/\omega_{\rm T}$ mass $(m(\rho_{\rm T}/\omega_{\rm T}) - m(\pi_{\rm T}))$	$() = M_{\rm W}$
. 1		L=1.0 fb ⁻¹ , 7 TeV [1204.1648]	483 GeV ρ_{T} mass $(m(\rho_{T}) = m(\pi_{T}) + m_{W}, m(a_{T}) =$	$= 1.1 m(\rho_{T}))$
ler	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420]	1.5 TeV N mass $(m(W_R) = 2$	
Oth	W _R (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420]	2.4 TeV W_R mass (m	(N) < 1.4 IeV)
0	$\Pi_{L} (DY prod, BR(\Pi \rightarrow II)=1) . 55 ee (\mu\mu), III$	L=4.7 fb ⁻¹ , 7 TeV [1210.5070] 4	109 GeV H_L^- mass (limit at 398 GeV for $\mu\mu$)	
	Π_{L} (D1 plot, D1($\Pi_{L} \rightarrow e\mu$)=1). 33 $e\mu$, $\Pi_{e\mu}$	L=4.7 fb ⁻¹ , 7 TeV [1210.5070] 37	5 GeV H ⁻ Mass	
	Color octer scalar . uljet resonance, $m_{\rm ji}$	L=4.8 fb ⁻ , 7 lev [1210.1718]		
		10-1	1	$10 10^2$
		10	I	10 10
* • • •				Mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena shown

Event Generation for the LHC

CMS Exotica Search

Event Generation for the LHC

Conclusions and Prospects

- Standard Model has (so far) been spectacularly confirmed at the LHC
- Monte Carlo event generation of (SM and BSM) signals and backgrounds plays a big part
- Matched NLO and merged multi-jet generators have proved essential
 - Automation and NLO merging in progress
 - NNLO much more challenging
- Best possible SM precision is essential for BSM searches

Thanks for listening!

Event Generation for the LHC

$W\&Z^0$ at Tevatron

- Herwig++ includes W/Z+jet (MEC)
- All agree (tuned) at Tevatron
- Normalized to data

Hamilton, Richardson, Tully JHEP10(2008)015

$\gamma\gamma$ at Tevatron

- Absolute normalization

 LO too low
- POWHEG agrees with rate and distribution
- At LHC, important background for Higgs search

D'Errico & Richardson, JHEP02(2012)130

To Be Confirmed

- Spin and parity 0⁺: correlations in VV^{*} decays
- Production mechanisms: gg,VBF,WH,ZH, ttH
- Self-coupling (HH production): difficult at LHC
- Total width 4.2 MeV: impossible?
- Decay fractions:

$b\overline{b}$	56%	$ au^+ au^-$	6.2%	$\gamma\gamma$	0.23%
WW^*	23%	ZZ^*	2.9%	γZ	0.16%
gg	8.5%	$C\overline{C}$	2.8%	$\mu^+\mu^-$	0.02%

Achievable Precision?

Figure 1: Capabilities of LHC for model-independent measurements of Higgs boson couplings. The plot shows 1 σ confidence intervals for LHC at 14 TeV with 300 fb⁻¹. No error is estimated for g(hcc). The marked horizontal band represents a 5% deviation from the Standard Model prediction for the coupling.

M Peskin, arXiv: 1207.2516

Achievable Precision?

Figure 2: Comparison of the capabilities of LHC and ILC for model-independent measurements of Higgs boson couplings. The plot shows (from left to right in each set of error bars) 1 σ confidence intervals for LHC at 14 TeV with 300 fb⁻¹, for ILC at 250 GeV and 250 fb⁻¹ ('ILC1'), for the full ILC program up to 500 GeV with 500 fb⁻¹ ('ILC'), and for a program with 1000 fb⁻¹ for an upgraded ILC at 1 TeV ('ILCTeV'). The marked horizontal band represents a 5% deviation from the Standard Model prediction for the coupling.

M Peskin, arXiv:1207.2516

Event Generation for the LHC