

Physics at the ILC

Tomohiko Tanabe ICEPP, The University of Tokyo

July 17, 2013, Kavli IPMU School on the Future of Collider Physics

Outline

Introduction Detectors & Event Reconstruction SUSY/DM at ILC Higgs Physics at ILC

July 4, 2012 – Discovery of new boson

Now known as "a Higgs boson"

Brief History + Future of Particle Physics

To be probed by **colliders,** neutrino, dark matter search, astrophysics...

Energy Frontier Colliders

International Linear Collider

2013-07-17, IPMU School "Physics at the ILC" (T. Tanabe)

ÌİĹ

CLIC: Compact Linear Collider

CDR published in 2012 → Most mature technology for multi-TeV lepton collider

Detectors and reconstruction issues

ILC Detectors

ILC Detector R&D

- Vertex Detector: low mass pixel sensors
- Time Projection Chamber: high resolution & low mass
- Calorimeters: high granularity sensors, 5x5mm² (ECAL), 3x3cm² (HCAL); absorbers for compact showers
- Solenoid: outside ECAL + HCAL

Sensor Size	ILC	ATLAS	Ratio
Vertex	5×5 mm²	400×50 mm ²	x800
Tracker	1×6 mm ²	13 mm²	x2.2
ECAL	5×5 mm² (Si)	39×39 mm²	x61

Optimized for Particle Flow Algorithm

Identify calorimeter hits for each particle

- use *best* energy measurement for *each* particle
- offers unprecedented jet energy resolution

Charged Tracks	→ Tracker		
Photons	→ ECAL		
Neutral Hadrons	→ HCAL		

Single particle energy resolution (ILC)

Detector	σ _ε / Ε	@ 100 GeV
Tracker	0.00002 × E	0.2%
ECAL	0.2 / √E	2%
HCAL	0.6 / VE	6%

飛跡校出器 Vertex TPC

Energy composition in a jet

H H H

Charged Tracks	~62%
Photons (π ^ο →γγ)	~27%
Neutral Hadrons	~10%

Naïve approach

Limits jet energy resolution

Particle flow approach

•••

8

.....

"Confusion" becomes the limiting factor

Rely less on ECAL and HCAL → Improve jet energy resolution

 $E_{jet} = E_{track} + E_{\gamma} + E_{n}$

Only ~10%

Jet energy resolution

Jet energy resolution

$$\mathbf{e}^{+}\mathbf{e}^{-} \rightarrow \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-} \rightarrow \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}\mathbf{W}^{+}\mathbf{W}$$
$$\mathbf{e}^{+}\mathbf{e}^{-} \rightarrow \tilde{\chi}_{2}^{0}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}\mathbf{ZZ}$$

Dark Matter

Jet energy resolution $\sigma(E_{jet})/E_{jet} \approx 3 \sim 4\%$ can separate hadronic W and Z

Also crucial for $Br(h \rightarrow cc)$ measurement

Detector Requirements

Muon / Tail Catcher Vertex Detector (ILD / SiD) HCAL Inner radius 15 / 14 mm **ECAL** 60 mm Outer radius TPC Impact parameter /TX $< 5 \,\mu m$ (high mom.) resolution **Tracker:** Track selection / V⁰ rejection Calorimeters: Lepton ID / PFA

Track impact parameter resolution goal at ILC:

$$\sigma_{r\phi} = 5 \ \mu \mathrm{m} \oplus \frac{10}{p(\mathrm{GeV}) \sin^{3/2} \theta} \ \mu \mathrm{m}.$$

Ensures good track measurement and flavor tagging.

İİL

2013-07-17, IPMU School "Physics at the ILC" (T. Tanabe)

tracks in vertex

ilc Flavor tag: by decay distance

Flavor tag: by parton mass

 \rightarrow Final discriminant uses multivariate analysis

Flavor tag performance

ΪĹ

Physics at the ILC

İİL

Cross Sections

Physics at the ILC

Main goals of the ILC physics program:

- Precise measurements of:
 - Properties of the Higgs sector
 - Interactions of top, gauge bosons, and new particles
- Searches for new physics
 - Discovery reach for color-neutral states (e.g. dark matter) can significantly exceed LHC
 - Sensitivity to new physics through tree-level and quantum effects

ILC Staging Strategy

TDR parameters

- ILC can gradually increase the CM energy by extending the Main Linac
 - Cost does not scale linearly due to facilities such as Damping Rings
- Physics determines the target energy: 250, 350, 500 GeV \rightarrow 1 TeV
 - Perform energy scans in-between, focus if we find something new

E_{CM} (GeV) 250 350 500 1000 Luminosity $(10^{34} \text{ cm}^{-2} \text{ s}^{-1})$ 4.9 1.0 1.8 0.75 Integrated Luminosity (fb⁻¹) 1000 250 350 500 Number of days * 385 405 322 233

*assuming continuous operation at **peak luminosity**

Luminosity can be increased by: doubling the number of bunches per train (1300 \rightarrow 2600) doubling the collision rate (5 Hz \rightarrow 10 Hz)

Discovering SUSY/DM at the ILC

Issues motivating the study of physics at **TeV scale**:

Naturalness

- Radiative correction to Higgs mass term has quadratic divergence
- Require new physics / new particles in the TeV range to avoid excessive fine-tuning
 - e.g. Supersymmetry (SUSY), Composite Higgs, Extra Dimensions

• Dark Matter (DM)

- WMAP relic density predicts O(100) GeV WIMP
- New physics models predict natural DM candidates

SUSY Particles

Lightest SUSY Particle (LSP) = Dark Matter candidate (if R-parity is conserved)

Electroweakino Direct Production

(Electroweakinos: collective name for gauginos and Higgsinos)

For LHC:

$$p\overline{p} \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 X, \ \tilde{\chi}_1^{+} \tilde{\chi}_1^{-} X, \ \dots$$

For ILC: $e^+e^- \to \tilde{\chi}_1^+ \tilde{\chi}_1^-, \, \tilde{\chi}_2^+ \tilde{\chi}_2^-, \, \tilde{\chi}_1^0 \tilde{\chi}_2^0, \, \dots$

Decays: $\tilde{\chi}_1^{\pm} \to W^{\pm} \tilde{\chi}_1^0$ $\tilde{\chi}_2^0 \to (Z/h) \tilde{\chi}_1^0$

Simplified model: $\tilde{\chi}_1^0$ is bino, $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$ are wino and degenerate

From LEP

Chargino mass > 100 GeV

Gaugino pair production

- ILC can search for SUSY particles with mass below $\sqrt{s/2}$
- Consider pair production of chargino / neutralino whose masses are close

$$e^+ e^- \rightarrow \chi_1^+ \chi_1^- \rightarrow \chi_1^0 \chi_1^0 W^+ W^-$$

 $- e^+ e^- \rightarrow \chi_2^0 \chi_2^0 \rightarrow \chi_1^0 \chi_1^0 Z^0 Z^0$

If soft jets \rightarrow challenging signature

• **Discovery** + mass measurement via detection of **kinematic edges**:

4 jets + missing 4-momentum

General strategy:

Reconstruct the hadronic decay of the chargino: **4 jets + missing 4-momentum** signature.

Choose jet combination most consistent with the same dijet mass.

Event selection based on:

- Number of particles
- Large missing energy
- Missing momentum *not* along the beam pipe
- Require minimum jet energy
- Jet finder transition values

Inclusive SUSY signal is well reconstructed for mass differences > 25 GeV.

sis strategy: On-shell boson decays

grated luminosity = 500 fb⁻¹

Higgsino pair production

Naturalness argument calls for light Higgsinos e.g. in the case of MSSM:

$$m_Z^2 = -2\left(m_{H_u}^2 + |\mu|^2\right) + \mathcal{O}(\cot^2\beta)$$

Higgsinos → small mass gaps

Even for sub-GeV mass differences, the charginos/neutralinos can be discovered / measured to O(1)% in mass.

ISR photon + soft particles

The **ISR tag** is critical in reducing γγ backgrounds by kicking the **hard forward electrons** into detector acceptance.

For the soft particles:

Choose characteristic signature, e.g. lepton on one side + pions on the other side.

Chen, Drees, Gunion [arXiv:hep-ph/9902309]

🔐 Electroweakino parameter scan

Scan over M1, M2, mu (fix 1 as LSP, scan over the two parameters) The squark/slepton sectors are decoupled.

Berggren, Han, List, Padhi, Su, TT [to appear]

LHC/ILC Complementarity

Green region: thermal higgsino relic abundance $\Omega_h h^2 < 0.12$

Baer, Barger, Huang, Mickelson, Mustafayev, Streehawong, Tata [arXiv:1306.3148]

ilc

SUSY / DM Connection

Neutralino LSP with light scalar top with small mass difference can provide cross sections consistent with WMAP data $m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0} \lesssim 30 \text{ GeV}$

Scalar top discovery + Precision mass measurements → Can establish neutralino as WIMP dark matter

Model Discrimination

- Phenomenology: $X^+ + X^- \rightarrow W^+ + DM + W^- + DM$
- How to discriminate different physics models?
 - Spin of X: e.g. Inert Higgs (0), SUSY (1/2), Little Higgs (1)
- Angular analysis of X production + Threshold Scan

Discovery of DM w/ mass precision $\Delta m(\chi^0_1)/\chi^0_1 \sim 3\%$ or better

Higgs Physics at the ILC

The Higgs Boson

The Higgs boson plays a unique role in the SM:

SM contains the simplest possible Higgs sector. There is no known principle for this simplicity.

Higgs Sector and New Physics

New physics can affect the Higgs sector

Extended Higgs Sector

May be able to explain well-established BSM phenomena: dark matter, neutrino oscillation, baryon asymmetry, etc.

Higgs Production at ILC

vvH events

4.000

Factory

2013-07-17, IPMU School "Physics at the ILC" (T. Tanabe)

75,000

Higgs recoil mass

Higgs recoil mass

Higgs: hadronic BRs

Measuring the Higgs BR into bb, cc, gg require flavor-tagging. Apply flavor template fit to ZH sample:

[Hiroaki Ono]

h→bb: ~1%, h→cc: ~7%, h→gg: ~9% at 250 GeV ILC with 250 fb-1 improves with more luminosity at higher energies

Higgs to tau pair decays

il: Higgs Measurements at ILC (1)

	$\Delta(\sigma \cdot BR)/(\sigma \cdot BR)$				
\sqrt{s} and \mathcal{L}	$250{\rm fb}^{-1}$	at $250 \mathrm{GeV}$	$500{\rm fb}^{-1}$	at $500 \mathrm{GeV}$	$1 \mathrm{ab^{-1}}$ at $1 \mathrm{TeV}$
$(P_{e^{-}}, P_{e^{+}})$	(-0.8	8,+0.3)	(-0.8	8,+0.3)	(-0.8, +0.2)
mode	Zh	$ u\overline{ u}h$	Zh	$ u \overline{ u} h $	$ u \overline{\nu} h $
$h \to b\overline{b}$	1.1%	10.5%	1.8%	0.66%	0.47%
$h \to c\overline{c}$	7.4%	-	12%	6.2%	7.6%
$h \to gg$	9.1%	-	14%	4.1%	3.1%
$h \to WW^*$	6.4%	-	9.2%	2.6%	3.3%
$h \to \tau^+ \tau^-$	4.2%	-	5.4%	14%	3.5%
$h \to ZZ^*$	19%	-	25%	8.2%	4.4%
$\mid h \rightarrow \gamma \gamma$	29-38%	-	29-38%	20- $26%$	7-10%
$h \to \mu^+ \mu^-$	100%	-	_	_	32%

ILC TDR, m_H =125 GeV, BRs from LHC HXSWG assumed.

Higgs Measurements at ILC (2)

500 GeV~ Top Yukawa Coupling

500 GeV~ Higgs Self-Coupling

process	$\sqrt{s} \; [\text{GeV}]$	$\mathcal{L} \left[ab^{-1} \right]$	(P_{e^-}, P_{e^+})	$\Delta(\sigma \cdot BR) / (\sigma \cdot BR)$	$\Delta g/g$
$t\bar{t}h$	500	1	(-0.8, +0.3)	25%	13%
Zhh	500	2	(-0.8, +0.3)	32%	53%
$t\overline{t}h$	1000	1	(-0.8, +0.2)	8.7%	4.5%
$ u \overline{ u} hh$	1000	2	(-0.8, +0.2)	26%	21%

ILC TDR, m_H =125 GeV, BRs from LHC HXSWG assumed. Higgs is reconstructed in the **h** \rightarrow **bb mode only**.

if: Higgs coupling determination

[Junping Tian]

Absolute determination of couplings require knowledge of the total width:

$$Br(H \to XX) = \frac{\Gamma(H \to XX)}{\Gamma_0} \propto \frac{g_{HXX}^2}{\Gamma_0} \longrightarrow \Gamma_0 \propto \frac{g_{HXX}^2}{Br(H \to XX)}$$

An easy example:

$$\Gamma_0 \propto \frac{g_{HZZ}^2}{Br(H \to ZZ^*)} \propto \frac{\sigma(e^+e^- \to ZH)}{Br(H \to ZZ^*)}$$

~20% precision at 250 GeV

A more sophisticated example:

$$Y_{1} = \sigma_{ZH} = g_{HZZ}^{2}$$

$$Y_{2} = \sigma_{ZH} \cdot Br(H \to b\bar{b}) = \frac{g_{HZZ}^{2} \cdot g_{Hbb}^{2}}{\Gamma_{0}}$$

$$Y_{3} = \sigma_{\nu\bar{\nu}H} \cdot Br(H \to b\bar{b}) = \frac{g_{HWW}^{2} \cdot g_{Hbb}^{2}}{\Gamma_{0}}$$

$$Y_{4} = \sigma_{\nu\bar{\nu}H} \cdot Br(H \to WW^{*}) = \frac{g_{HWW}^{4}}{\Gamma_{0}}$$

$$\bullet \quad \Gamma_0 = \frac{Y_1^2 \cdot Y_3^2}{Y_2^2 \cdot Y_4}$$

~6% precision combining 250 GeV + 500 GeV

Higgs Production at ILC

m_H=120 GeV

ilr

ΪĹ

HZZ, HWW coupling precision: ~1% or better

Higgs Couplings at ILC

Measurement of $\sigma \times BR \rightarrow$ Input to global fit \rightarrow Extract Higgs couplings Exploit LHC / ILC synergy.

LHC can measure $g_{H\gamma\gamma} / g_{HZZ}$ precisely (~5% at 3000 fb-1) ILC measurement of $g_{HZZ} \rightarrow$ precise measurement of $g_{H\gamma\gamma}$

Verify relation between coupling and mass \rightarrow confirmation of mass generation mechanism **Any deviation is a sign of new physics.**

Identify new physics pattern via precision measurement of Higgs couplings

Two-Fermion Processes

Search for Z' boson

İİĹ

Polarized differential cross sections: LL/RR/LR/RL Forward-backward asymmetries

 e^+

 γ/Z^*

The discovery of "a Higgs boson" at the LHC opened a new era in particle physics.

ILC is the ideal machine for the precise study of the **Higgs sector.**

Search for **new physics** at the **ILC** is in many ways complementary to that of the **LHC**. Unique opportunities available at **ILC**!

Again, from Hitoshi's talk:

- There are efforts in Japan to promote the **ILC**.
- Support from the international community is vital to the success of ILC as a truly global project.