

ILC Main Linac accelerator development

Hitoshi Hayano, KEK, Tsukuba, Japan

07182013school@IPMU-Kavli

Contents

- 1. ILC Accelerator: Introduction
- **2.** Accelerator Component Details
- **3. Development of Component**

Cavities

Cryomodule

- 4. Test Facilities
- 5. ILC Accelerator Prospect

Introduction

- ILC, International Linear Collider, is designed by ILC-GDE (International Linear Collider, Global Design Effort).
 The main accelerator uses superconducting RF acceleration.
- The design development; 2004: Superconducting RF acceleration was selected.
 2007: RDR (Reference Design Report) published.
 2009: SB2009 (cost reduction design) published.
 2009: Interim Report for technology development.
 2013: TDR (Technical Design Report) published.
- Hardware development; Euro-XFEL accelerator (1/20 scale of ILC) is under construction in DESY.
 S1-Global cryomodule experiment was conducted in STF.
 ILC-type cryomodules are under test, construction in FNAL, KEK.

ILC Accelerator Introduction

Birds view of ILC (30km) –actual scale-

Mountainous site Tunnel design

When the state on the section of the section

Birds View of surface facility of access tunnel

Electric plant, Helium plant, Cooling water, Heat exchanger of air Cryomodule transportation

Birds View of ILC accelerator : compressed image

Sequence of beam acceleration

Main Linac Tunnel Design for Mountainous site

11m

Perspective view of Main Linac Tunnel

Center shield wall is transparent for easy to view both tunnel

Accelerator component details

Main Linac Arrangement for Mountainous site Tunnel

©Rey.Hori/KEK

Main Accelerator Module: Cryomodule

9 Superconducting Cavities in the 12m length, 1m diameter cryostat

Superconducting Cavity made by pure Niobium 14560 unit (TDR)

Picture of Superconducting Cavity (length 1.2m, diameter 0.2m) Cooled down at temperature 2K, then become superconducting state.

Long lasting High Accelerating Field by small input RF power (RF wall loss is very small)

Helium jacket, magnetic shield, frequency tuners are installed around the cavity, then put into the cryomodule.

Principle of Electron beam Acceleration

Frequency Tuner : Cavity Resonance Frequency Control

Resonance frequency control mechanism by changing total cavity length.

Step motor

Location: middle of He vessel Motor: inside of module, low temperature Piezo: two low-voltage piezo

Piezo Actuator Blade tuner

Design Stiffness: 30kN/mm Nominal sensitivity: 1.5Hz/step Piezo stroke at RM: 55 µm

Input Coupler : transmit microwave power, cut heat flow

Microwave power is introduced from waveguide (room temperature), go through long coax line,

then put into 2k cooled superconducting cavity (dipole antenna radiation)

Thin SUS pipe of outer conductor with bellows (for long path-length)

Inner conductor made by Copper, kept room temperature

> Inside of outer conductor : Copper plating 10µm

TTF III coupler

Type: coaxial to antenna Window: two cylindrical, cold window & warm window **Coupling: tunable** Interface: 40mm dia. cavity port WR650 for waveguide Power: 350kW, 1.5ms, 5Hz

Waveguide (room temperature

Ceramic window (vacuum insulation)

Cavity side (2K)

High Power Microwave (pulse) is put into Cavity

Multi-beam Klystron: generate high power pulsed microwave

10MW 1.5ms 67% efficiency

Scope picture of the klystron test. The lines show the klystron voltage (116 kV) in yellow, the current (128 A) in blue and RF output (5 MW each) in magenta and green.

Toshiba E3736H

Technology of Multi-beam Klystron

Microwave is amplified by the klystron. In klystron, microwave cavity is used to modulate the beam velocity by small power. Modulated beam reach to its maximum bunching at the output cavity, and generate high power microwave.

magnetic field is curing

6 electron beams from 6 thermionic cathodes

output waveguide for high power micro-wave

microwave cavity to make beam velocity modulation

coils for beam focusing

Pulse high voltage power supply for klystron

Specification of pulse power supply

Accelerator Laboratory

Drive pulse form

Pulse width : 1.7ms Flatness : +/-0.5% with 1.5ms top High voltage, high current PS

Drive one 10MW multi-beam klystron

RF width	1.5 ms
Power supply pulse width	1.7 ms
Rise-time, fall-time	0.2 ms
Voltage	120 kV
current	140 A
Flatness of pulse flat-top	$\pm 0.5\%$
Pulse energy	29 kJ
Tolerable energy leak at klystron break- down	< 20 J
repetition	5 Hz
efficiency	85 %
Required AC power for one PS	168 kW
Required AC power for whole Linac PS	109 MW
Number of PS for whole Linac	約650台

TDR Pulse high voltage P.S.: Marx Generator

(3)

Marx回路方式の動作原理

特長

- ・ Classic Marx circuit (1923年 Erwin Marxによる発明) +V R C Gap Switch Marx cell
- Solid state Marx circuit(2000年 A. Krasnykh)
 +V

Digital RF control: cavity amplitude & phase feedback

Digital RF control System : LLRF (low-level RF control)

Schematic diagram of LLRF system

8/9π mode
 noise in ADC-input

<Latency of FB board> ADC : 7.5 clock, DAC :15 clock @ 81.25MHz IQ separation & Correction : 5 clock@40.625MHz Calculation in FPGA : 23 clock @ 81.25MHz Total 55.5 clock @ 81.25MHz (0.68 µs)

Example of controlled amplitude & phase

High Gradient Superconducting cavity development

Requirement for cavity performance

ILC TDR Specifications

ILC R&D target: > 35 MV/m with 90% yield

ILC fabrication: > 35 MV/m +/-20% (28 - 42 MV/m), with 90% yield

ILC accelerator operation: 31.5MV/m +/-20% performance

Fabrication of Cavity (in case of TESLA-cavity)

Components for bare cavity

Components for Helium tank jacket

(部品??個)

Reasons to limit cavity gradient performance

Temperature & X-ray mapping to localize quench location

To localize quench location,

Temperature sensors are attached on equator and cell-taper region

352 carbon resistors (Allen-Bradley, 50 or 100Ω)

Online display is available during cavity field test

Yasuchika Yamamoto

Inspection Camera to find defects inside of cavity

High resolution camera inside of cylinder. Special arrangement of LED illumination makes possible to capture defect in shiny inner surface.

KEK, Kyoto development. DESY, FNAL, JLAB, CERN introduced.

High resolution camera(7µm), mirror angle controller, and illumination controller are in the cylinder.

Ken Watanabe KEK- Kyoto-Univ.

Local grinder to remove defects inside of cavity

Small grinder motor installed inside of cylinder, is designed to stretch into cavity inside

Ken Watanabe

Electro-polish for Cavity inner surface treatment

EP facility of KEK STF (real picture)

About 40 process/year in KEK-STF EP facility, Then achieved ILC spec. gradient routinely.

EP (Electro-Polish)

Use of sulfuric acid + hydro-fluoride. Apply voltage between Aluminum center conductor and niobium cavity. Then etching inner surface.

Key technology is how to get smooth surface without residual contamination.

Surface Monitoring for field emission reduction (1)

Process monitoring by Coupon on single-cell cavity

Optimization of surface treatment to reduce residual contamination

- (a) Electro-polish parameter optimization (low voltage, low temperature)
- (b) Rinsing method development (water rinsing just after EP, brushing, ultrasonic rinsing, etc.)

STF surface research team

coupor
Surface Monitoring for field emission reduction (2)

3D X-ray tomography application

KEK - Kyoto Univ.

KEK Cavity performance, results of this development

◎(>35MV/m), **○(>=28MV/m)** :ILC spec. clear

• 2010-2012 KEK cavities

	name	gradient	to be installed
0	MHI-012	40.7MV/m	for capture cryomodule(2-nd VT)
0	MHI-013	32.2MV/m	for capture cryomodule(2-nd VT)
0	MHI-014	36.6MV/m	for CM-1 ILC cryomodule (3-rd VT)
0	MHI-015	35.7MV/m	for CM-1 ILC cryomodule (4-th VT)
0	MHI-016	33.8MV/m	for CM-1 ILC cryomodule (2-nd VT)
0	MHI-017	38.4MV/m	for CM-1 ILC cryomodule (1-st VT)
0	MHI-018	36.2MV/m	for CM-1 ILC cryomodule (4-th VT)
0	MHI-019	37.0MV/m	for CM-1 ILC cryomodule (2-nd VT)
0	MHI-020	35.1MV/m	for CM-1 ILC cryomodule (3-rd VT)
0	MHI-021	38.9MV/m	for CM-1 ILC cryomodule (1-st VT)
0	MHI-022	35.8MV/m	for CM-1 ILC cryomodule (2-nd VT)

Average gradient above 11 cavities = 36.4MV/m ILC spec. achieved:11cavities(yield 100%, but max process repeat was 4)

Cavity Yield Statistics (GDE wide)

Cryomodule development

S1-Global cryomodule as an example.

S1-Global cryomodule: international collaborative effort for components were brought from DESY,FNAL,INFN,KEK assembly and experiment hosted by KEK-STF, during 2009-2011.

S1-Global Cavity Packages

S1-Global Tuners

Blade tuner (INFN/FNAL)

Location: middle of He vessel Motor: inside of module, low temperature Piezo: two low-voltage piezo

Design Stiffness: 30kN/mm Nominal sensitivity: 1.5Hz/step Piezo stroke at RM: 55 µm

S1-Global Tuners

Lever-arm tuner (DESY/Saclay)

Location: end of He vessel Motor: inside of module, low temperature Piezo: two low-voltage piezo

Design Stiffness: 40kN/mm Nominal sensitivity: 1.0Hz/step Piezo stroke at RM: 55 µm

S1-Global Tuners

Slide-jack tuner (KEK)

Location: two types, middle of He vessel end of He vessel Motor: outside of module, room temperature Piezo: one high-voltage piezo

Design Stiffness: 290 kN/mm Nominal sensitivity: 3 Hz/step Piezo stroke at RM: 40 μm

S1-Global Input Couplers

Type: coaxial to antenna Window: two cylindrical, cold window & warm window Coupling: tunable Interface: 40mm dia. cavity port WR650 for waveguide Power: 350kW, 1.5ms, 5Hz

TTF & FLASH (& FNAL) experience in many years,

Complicated assembly procedure is required.

S1-Global Input Couplers

STF-2 coupler (KEK)

Type: coaxial to antenna Window: two disk-type, cold window & warm window Coupling: tunable Interface: 60mm dia. cavity port WR650 for waveguide Power: 350kW, 1.5ms, 5Hz

Extension of TRISTAN(CW) coupler,

Simple assembly procedure by no bellows in cold part. However, static heat loss increased 4 times.

Assembly work

(December 2009 – May 2010)

Arrival of contributed components

December 2009

Assembly work

Tug Arkan Brian Smith Marco Battistoni from FNAL

Manuela Schmoekel Patrick Schilling from DESY Carlo Pagani Angelo Bosoti Rocco Pararella from INFN Serena Barbanott from FNALi

Assembly work

Serena Barbanotti from FNAL installed magnetic shield

Denis Kostin from DESY installed warm couplers

Installation into STF tunnel

Cryomodule experiment

ner Study

LFD Stud

Carlo Pagani (INFN) Angelo Bosoti (INFN) Rocco Pararella (INFN) Yuriy Pischalnikov (FNAL)

Denis Kostin (DESY)

Results of Performance Test

(June 2010 – February 2011)

Cavities Performance

Before cryomodule installation after cryomodule installation

7 cavities combined operation

Average 30.0MV/m Average 27.7MV/m Average 26.0MV/m

Cavities Performance Combined & feedback control

Vector sum operation of 7 cavities with LLRF control

Tuners Performance

Mechanical tuner

ring and shaf

A4 Slide-jack tuner: failed during first excursion, later, found jack-slope bending -> improved in the next production

Tuners Performance

Piezo tuner

x 10⁻³

C2 Blade tuner: one piezo breakdown, later, found crack on piezo -> improved in the next production

⁻requency shift - Hz

Tuners Performance

LFD measurement

Piezo comp. for MHI#6 at 38MV/m in S1-G (315Hz/11.3ms/400V/10V) ('10/11/10)

Lorentz Force Detuning (LFD) were measured By Pulse-cut method.

Slide-jack tuners were 4 – 5 times stiffer than other tuners.

Residual LFD were less than 15Hz for all tunes, by adaptive feed-forward control.

Adaptive feed-forward compensation

Couplers Performance

A1 (KEK) coupler: trip at 15MV/m by vacuum increase. -> reason not yet identified

Thermal Performance

Static, dynamic loss

Static loss	Module-C(INFN,FNAL,DESY)	Module-A (KEK)
2K	7.2 W [6.8 V	W estimation]
5K	5.3 W [4.1 W]	7.3 W [7.2 W]
80K	34.4 W [35.3 W]	48.7 W [44.3 W]

The static loss were consistent with the estimation.

STF-2 (KEK) coupler had 9x large dynamic loss than TTF-III coupler. Later, it was found it came from Cu 3μ m inner coating layer heating. → It was improved in the next model, already.

Summary of S1-Global cryomodule experiment

- The design, fabrication, assembly, experiment, and disassembly of S1-Global were done by the international collaboration based on ILC-GDE, hosted by KEK STF.
- The achieved gradient performance of the contributed cavities was average 30.0MV/m before installation, 27.7MV/m for single cavity operation after installation, and 26.0MV/m for 7 cavities simultaneous operation.
- The plug-compatibility concept was demonstrated by building one set of cryomodule from brought-in cavities and couplers of each laboratories.
- Several important issues were identified and improved right after the experiment.

World Test Facility of ILC Main Linac

ILC-Main Linac development facility in the world

FLASH@DESY

STF@KEK

ILCTA@FNAL

FLASH accelerator for XFEL test stand

FLASH Accelerator; 7 cryomodules, **1GeV SASE-FEL** (~6nm raising)

Cryomodule Test Bench

Hans Weise, DESY TTC Meeting Beijing, December 2011

Status of the European XFEL

European

XFEL Linac Tunnel: preparing the floor

Tunnel is already completed. The accelerator installation is going on in this two years.

FNAL Cryomodule assembly facility

The first type III+ cryomodule is finished the test. The second type III+ cryomodule is ready for test.

Cryomodule Assembly

2nd CM Ready at Test Facility
ILCTA-NML at **FNAL**

200m Test Accelerator is now under construction

Prospect of ILC accelerator

Project Implementation Planning

Possible Roadmap to an ILC

Study of Industrial plant of cavity mass-production

KEK-MHI

Study of plant arrangement assuming existing building (53m x 30m)

Nb plates and fabricated end-group parts are input 2 shifts/day for 200days/year work. (about 30 people x 2 shifts/day) Production capacity Max 530 cavity/year,

2650 cavities for 5 years (1/6 - 1/7) for ILC whole production)

Assuming final EP process and field test are done elsewhere.

Vacuum vessel, shield top-plate

Tested cavity and fabricated parts are input 2 shifts/day for 200days/year work. (about 37 people x 2 shifts/day) Production capacity Max 96 cryomodule/year, 480 cryomodule for 5 years (1/4 for ILC whole production)

Assuming cryomodule test is done elsewhere.

Construction of facility : cavity & cryomodule test for ILC production

New building (80m x 30m) to be completed in 2014 at STF north.

Superconducting Accelerator Development Hall (2014)

Cavity test equip. and Cryomodule test equip. development in KEK, followed to DESY test facility for Euro-XFEL.

Thanks to all the collaborator of ILC-GDE, LCC. Hope to realize ILC, soon.

End of slide