Mass hierarchy and physics beyond the Standard Model

I. Antoniadis

School on the Future of Collider Physics IPMU, Tokyo, Japan 16-19 July 2013

- Mass hierarchy and 126 GeV Higgs
- Low energy SUSY
- Live with the hierarchy
- Extra *U*(1)'s
- Low scale strings and large extra dimensions

Standard Model of **electroweak** + **strong** forces

- Quantum Field Theory Quantum Mechanics + Special Relativity
- Principle: gauge invariance $U(1) \times SU(2) \times SU(3)$

Very accurate description of physics at present energies 17 parameters

$$\mathcal{L}_{SM} = -\frac{1}{2} \text{tr} F_{\mu\nu}^2 + \bar{\psi} \not D \psi + \bar{\psi} Y H \psi - |DH|^2 - V(H)$$

$$\overrightarrow{\mathcal{I}} \qquad \uparrow \qquad \uparrow$$
Forces Matter Higgs

minimal Higgs sector: $V(H) = -\mu^2 |H|^2 + \lambda (|H|^2)^2$

Its discovery was one of the main goals of LHC

Number of events = Cross section \times Luminosity

Higgs boson discovery

 $m_H = 125.5 \pm 0.2 \,(\text{stat.}) \pm 0.5 \,(\text{syst.})$

 $m_H = 125.7 \pm 0.3 \pm 0.3$ GeV

Entrance of the Higgs Boson in the Particle Data Group (PDG) 2013 !

H⁰

Beyond the Standard Model of Particle Physics: driven by the mass hierarchy problem

Higgs mass: very sensitive to high energy physics quantum corrections: $\delta m_H \sim \delta M_W$ of order of UV cutoff Λ stability requires adjustment of parameters at very high accuracy to keep the physical mass $(m_H^{tree})^2 + \delta m_H^2$ at the weak scale

 $\Lambda = M_{GUT}$ or $M_P \Rightarrow$ fine tuning at 28-32 decimal places !

Why gravity is so weak compared to the other interactions?

Standard picture: low energy supersymmetry

every particle has a superpartner with spin differ by 1/2

cancel large quantum corrections to the Higgs mass

Advantages:

- natural elementary scalars
- gauge coupling unification
- LSP: natural dark matter candidate
- radiative EWSB

Problems:

- too many parameters: soft breaking terms
- MSSM : already a % ‰ fine-tuning 'little' hierarchy problem

Natural framework: Heterotic string (or high-scale M/F) theory

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: March 26, 2013)

Inclusive searches	$\begin{array}{l} \text{MSUGRA/CMSSM: 0 lap + f = 4 = } r_{\text{mis}} \\ \text{MSUGRA/CMSSM: 1 lap + f = 4 = } r_{\text{mis}} \\ \text{MSUGRA/CMSSM: 1 lap + f = 4 = } r_{\text{mis}} \\ \text{Pheno model: 0 lap + f = 4 = } r_{\text{mis}} \\ \text{Pheno model: 0 lap + f = 4 = } r_{\text{mis}} \\ \text{MSUGRA/CMSM: 1 lap + 1 = 4 = } r_{\text{mis}} \\ \text{MSSB (R NLSP): 1 = 2 + f = 4 = } r_{\text{mis}} \\ \text{GMS (M NLSP): 2 + 1 = 4 = } r_{\text{mis}} \\ \text{GM (wino NLSP): 7 + 1 = 4 = } r_{\text{mis}} \\ \text{GM (wino NLSP): 7 + 1 = 4 = } r_{\text{mis}} \\ \text{GM (mison NLSP): 7 + 1 = 4 = } r_{\text{mis}} \\ \text{GM (mison NLSP): 7 + 1 = 4 = } r_{\text{mis}} \\ \text{Gravition SP: 7 model + 4 = } r_{\text{mis}} \\ \text{Gravition SP: 7 model + 4 = } r_{\text{mis}} \\ \end{array}$	Let an " a two untractions on the test let a m" a two provides constructions let a more than a construction let a more than a construction let a more than a construction let a more than a more than a more let a more than a more than a more than let a more than a more than a more than a more let a more than a more than a more than a more let a more than a more than a more than a more than a more let a more than a more than a more than a more than a more let a more than a more than a more than a more than a more let a more than a more than a more than a more than a more let a more than a more let a more than a		$ \begin{split} \widetilde{q} &= \widetilde{g} \; \text{mass} \\ \widetilde{g} \; \text{mass} \\ \mathfrak{sg} \; \text{mass} \\ \text{mass} \; (\mathfrak{m}_{2}) < 2 \; \text{hv}, \; \text{hget} \; \widetilde{\chi}_{1}^{3} \\ \widetilde{g} \; \text{mass} \; (\mathfrak{m}_{2}) < 2 \; \text{hv}, \; \text{hget} \; \widetilde{\chi}_{1}^{3} \\ \mathfrak{mass} \; (\mathfrak{m}_{2}) < 2 \; \text{hv}, \; \text{hget} \; \widetilde{\chi}_{1}^{3} \\ \mathfrak{mass} \; (\mathfrak{m}_{2}) < 2 \; \text{hv}, \; \mathfrak{mass} \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; \text{hs}) \\ \mathfrak{mass} < (\mathfrak{m}_{2} < - 1 \; hs$	ATLAS Preliminary
3rd gen. gluino mediated	$\tilde{g} \rightarrow bb\gamma^{\prime\prime}_{\gamma}$: 0 lep + 3 b-j's + $E_{\tau,mins}$ $\tilde{g} \rightarrow t\tilde{t}\gamma^{\prime\prime}_{\gamma}$: 2 SS-lep + (0-3b-)j's + $E_{\tau,mins}$ $\tilde{g} \rightarrow t\tilde{t}\gamma^{\prime\prime}_{\gamma}$: 0 lep + multi-j's + $E_{\tau,mins}$ $\tilde{g} \rightarrow t\tilde{t}\gamma^{\prime\prime}_{\gamma}$: 0 lep + 3 b-j's + $E_{\tau,mins}$	L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-145] L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-007] L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-163] L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-145]	1.24 TeV g m 900 GeV ğ mass 1.00 TeV ğ mas 1.15 TeV ğ m	mass $(m[\tilde{\chi}_1^*] < 200 \text{ GeV})$ 8 T $(any m[\tilde{\chi}_1^*])$ 8 T S $(m[\tilde{\chi}_1^*] < 300 \text{ GeV})$ 8 T ass $(m[\tilde{\chi}_1^*] < 200 \text{ GeV})$ 8 T	eV, all 2012 data eV, partial 2012 data
3rd gen. squarks direct production 11	$\begin{array}{c} bb, b \rightarrow b y_i^{(2)} (1 \text{ is } p + 2 p \text{ is } s + \varepsilon_{ $	L+12 6/1 2 16/2 (ALL-2C-004-2012-001) L=20.7 6/1 2 16/2 (B20.426C-004-2012-001) L=20.7 6/1 8 16/2 (B20.426.1208.426.1208.2102) L=20.7 16/1 8 16/2 (ALL-3C-004-2012-001) L=20.7 16/1 16/2 (ALL-3C-004-2012-001) L=20.5 6/1 8 16/2 (ALL-3C-004-2012-002) L=20.5 6/1 8 16/2 (ALL-3C-004-2012-002) L=20.7 16/1 16/2 (ALL-3C-004-2012-002) L=20.7 16/1 16/2 (ALL-3C-004-2012-002)	Base and Datases (mg2) All operating and the second seco	< 120 GeV) 7 T)) m(t)m(z) = 150 GeV) m(t)m(z) = 10 GeV) = 0) 3 GeV) 3 GeV) 3 GeV)	ēV, all 2011 data
EW direct	$\begin{array}{c} \left(\bigcup_{i} - i \overline{\chi}_{i}^{0} : 2 \text{ lep } + \overline{\mathcal{E}}_{\text{rmins}}^{\text{rmins}} \\ \overline{\chi}_{i}^{1} \overline{\chi}_{i}^{2} : \overline{\chi}_{i}^{-1} \rightarrow h(\overline{V}) : 2 \text{ lep } + \overline{\mathcal{E}}_{\text{rmins}} \\ \overline{\chi}_{i}^{1} \overline{\chi}_{2}^{0} \rightarrow \overline{U}(\overline{V}) : \overline{\chi}_{i} + \overline{\mathcal{E}}_{i} - \overline{\chi}_{i}^{\text{rmins}} \\ \overline{\chi}_{i}^{1} \overline{\chi}_{2}^{0} \rightarrow \overline{U}(\overline{V}) : \overline{V}(\overline{V}) : 3 \text{ lep } + \overline{\mathcal{E}}_{\text{rmins}} \\ \overline{\chi}_{i}^{1} \overline{\chi}_{2}^{0} \rightarrow \overline{U}(\overline{V}) : \overline{\chi}_{i}^{0} = \overline{\mathcal{E}}_{i} \\ \overline{\chi}_{i}^{0} \rightarrow \overline{U}(\overline{V}) : \overline{\chi}_{i}^{0} = \overline{\mathcal{E}}_{i} \\ \overline{\chi}_{i}^{0} \rightarrow \overline{\mathcal{E}}_{i}^{0} = $	L=4.7 fb ⁻¹ , 7 TeV [1208.2884] L=4.7 fb ⁻¹ , 7 TeV [1208.2884] L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-628] L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-628] L=20.7 fb ⁻¹ , 8 TeV [ATLAS-CONF-2013-635]	85-195 GeV Î mass (m(0 ⁺ ₁) = 0) 110-340 GeV \$\$\vec{\cap_{1}}{\cap_{1}}\$ mass (m(0 ⁺ ₁) < 10 GeV, 1 180-330 GeV \$\$\vec{\cap_{1}}{\cap_{1}}\$ mass (m(0 ⁺ ₁) < 10 GeV, 1 180-330 GeV \$\$\vec{\cap_{1}}{\cap_{1}}\$ mass (m(0 ⁺ ₁) < 10 GeV, 1 180-330 GeV \$\$\vec{\cap_{1}}{\cap_{1}}\$ mass (m(0 ⁺ ₁) < 10 GeV, 1 180-330 GeV \$\$\vec{\cap_{1}}{\cap_{1}}\$ mass (m(0 ⁺ ₁) = m(0 ⁺ ₁), m(0 ⁺ _{1}) 180 GeV \$\$\vec{\cap_{1}}{\cap_{1}}\$ mass (m(0 ⁺ ₁) = m(0 ⁺ ₁), m(0 ⁺ _{1})	$\begin{split} & \widehat{n}(\overline{x}) = \frac{1}{2} (m(\overline{x}_1^+) + m(\overline{x}_2^+))) \\ & \widehat{n}(\overline{x}) = \frac{1}{2} (m(\overline{x}_1^+) + m(\overline{x}_1^+))) \\ & \widehat{n}_1^+ = m(\overline{x}_2^+) + m(\overline{x}_1^+) = 0, m(\overline{1},\overline{x}^+) \text{ as above } \\ & \widehat{n} = 0, \text{ algebra is decoupled}) \end{split}$	
Long-lived particles	$\begin{array}{l} \text{Direct} \ensuremath{\widetilde{\chi}_1^*} \ensuremath{\widetilde{\rho}}\ensuremath{\widetilde{\mu}}\ensuremath{\widetilde{\chi}_1^*} \\ \text{Stable} \ensuremath{\widetilde{g}}, \ensuremath{R}\ensuremath{h}\ensuremath{\widetilde{\chi}}\ensuremath{\widetilde{\chi}}\ensuremath{\widetilde{\chi}}\ensuremath{\widetilde{\chi}}\ensuremath{\widetilde{\chi}}\ensuremath{\widetilde{g}}\ensuremath{\widetilde{g}}\ensuremath{\widetilde{g}}\ensuremath{\widetilde{g}}\ensuremath{\widetilde{g}}\ensuremath{\widetilde{g}}\ensuremath{\widetilde{g}}\ensuremath{\widetilde{\chi}}\ensuremath{\widetilde{g}}\ensuremath{\widetilde{g}}\ensuremath{\widetilde{g}}\ensuremath{\widetilde{\chi}}\ensuremath{\widetilde{g}$	L+4.7 fb ⁻¹ , 7 TeV [1210.2832] L+4.7 fb ⁻¹ , 7 TeV [1211.1597] L+4.7 fb ⁻¹ , 7 TeV [1211.1597] L+4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2013-016] L=4.4 fb ⁻¹ , 7 TeV [1210.7451]	220 GeV \$\tilde{\chi}_1^+\$ mass (1 < \tilde{\chi}_1^+) < 10 mass 985 GeV \$\tilde{g}\$ mass 300 GeV \$\tilde{x}\$ mass (5 < tan\$\tilde{x}\$ 20) 230 GeV \$\tilde{\chi}\$ mass (0.4 < \tilde{x}\$)^2 > 2 ms) 700 GeV \$\tilde{\tilde{x}\$ mass (1 < \tilde{x}\$)^2 > 2 ms)	s s nm < ct < 1 m,õjdeccupled)	
Nd X X	$\begin{array}{c} LFV: pp{-}\bar{v};t,\breve{v}, \neg e{+}t_{t} \text{ resonance}\\ LFV: pp{-}\bar{v};t,\breve{v}, \neg e(u) + r \text{ resonance}\\ linear RPV CMSSM: 1 lep + 7 s + E_{r,rmss}\\ g, \breve{g}, \neg W, \breve{g}, \neg ee_{w}, e,v, \cdot 3 lep + 1 t + E_{r,rmss}\\ g, \neg q, \neg rtv, eev, \cdot s lep + 1 t + E_{r,rmss}\\ g \rightarrow qq : 3 let rsonance pair\\ g \rightarrow l(t, c) d s) : S c = r, (c, c) d s) s s s e r s \\ f s \mathsf$	L=4.6 th ⁻¹ , 7 TeV [1212.1227] L=4.6 th ⁻¹ , 7 TeV [1212.1227] L=4.7 th ⁻¹ , 7 TeV [ATLAS-CONF-2013-469] L=20.7 th ⁻¹ , 8 TeV [ATLAS-CONF-2013-636] L=20.7 th ⁻¹ , 8 TeV [ATLAS-CONF-2013-667] L=20.7 th ⁻¹ , 8 TeV [ATLAS-CONF-2013-607]	1.01 TeV 1.10 TeV \v 1.10 TeV	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
WIMP in	Scalar gluon : 2-jet resonance päir teraction (D5, Dirac χ) : 'monojet' + Ε _{τ,niss}	L+4.6 fb ⁻¹ , 7 TeV [1210.4826] L+10.5 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-147] 10	100-227 GeV sgluon mass (incl. limit from 11 704 GeV M* scale (i 1 1	10.2693) m _y < 80 GeV, limit of < 687 GeV for D8)	10

 $^{*}Only$ a selection of the available mass limits on new states or phenomena shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

Mass scale [TeV]

I. Antoniadis (CERN)

Remarks on the value of the Higgs mass $\sim 126~\text{GeV}$

- consistent with expectation from precision tests of the SM
- favors perturbative physics quartic coupling $\lambda = m_H^2/v^2 \simeq 1/8$

Window to new physics

- compatible with supersymmetry
 - but appears fine-tuned in its minimal version [12]
 - early to draw a general conclusion before LHC13/14
 - e.g. an extra singlet or split families can alleviate the fine tuning [13]
- very important to measure its properties and couplings [17] any deviation of its couplings to top, bottom and EW gauge bosons implies new light states involved in the EWSB altering the fine-tuning

Fine-tuning in MSSM

Upper bound on the lightest scalar mass:

$$m_h^2 \lesssim m_Z^2 \cos^2 2\beta + \frac{3}{(4\pi)^2} \frac{m_t^4}{v^2} \left[\ln \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{A_t^2}{m_{\tilde{t}}^2} \left(1 - \frac{A_t^2}{12m_{\tilde{t}}^2} \right) \right] \lesssim (130 \, GeV)^2$$

 $m_h \simeq 126 \,\, {
m GeV} \, \Rightarrow \, m_{ ilde{t}} \simeq 3 \,\, {
m TeV}$ or $A_t \simeq 3 m_{ ilde{t}} \simeq 1.5 \,\, {
m TeV}$

 \Rightarrow % to a few ‰ fine-tuning

minimum of the potential:
$$m_Z^2 = 2 rac{m_1^1 - m_2^2 \tan_eta^2}{ an^2 eta - 1} \sim -2m_2^2 + \cdots$$

 $\begin{array}{ll} \mathsf{RG evolution:} & m_2^2 = & m_2^2(M_{\mathrm{GUT}}) - \frac{3\lambda_t^2}{4\pi^2}m_{\tilde{t}}^2\ln\frac{M_{\mathrm{GUT}}}{m_{\tilde{t}}} + \cdots \,_{[31]} \\ & \sim & m_2^2(M_{\mathrm{GUT}}) - \mathcal{O}(1)m_{\tilde{t}}^2 + \cdots &_{[10]} \end{array}$

MSSM with dim-5 and 6 operators

I.A.-Dudas-Ghilencea-Tziveloglou '08, '09, '10

parametrize new physics above MSSM by higher-dim effective operators

relevant super potential operators of dimension-5:

$$\mathcal{L}^{(5)} = \frac{1}{M} \int d^2 \theta \left(\eta_1 + \eta_2 S \right) (H_1 H_2)^2$$

 η_1 : generated for instance by a singlet

$$W = \lambda \sigma H_1 H_2 + M \sigma^2 \quad \rightarrow \quad W_{\text{eff}} = \frac{\lambda^2}{M} (H_1 H_2)^2$$

Strumia '99 ; Brignole-Casas-Espinosa-Navarro '03 Dine-Seiberg-Thomas '07

 η_1 : corresponding soft breaking term spurion $S \equiv m_S \theta^2$

Physical consequences of MSSM₅: Scalar potential

$$\begin{split} \mathcal{V} &= \ m_1^2 |h_1|^2 + m_2^2 |h_2|^2 + B \mu (h_1 h_2 + \mathrm{h.c.}) + \frac{g_2^2 + g_Y^2}{8} \left(|h_1|^2 - |h_2|^2 \right)^2 \\ &+ \left(|h_1|^2 + |h_2|^2 \right) \left(\eta_1 h_1 h_2 + \mathrm{h.c.} \right) + \frac{1}{2} \left[\eta_2 (h_1 h_2)^2 + \mathrm{h.c.} \right] + \mathcal{O} \left(\eta_i^2 \right) \end{split}$$

- $\eta_{1,2} \Rightarrow$ quartic terms along the D-flat direction $|h_1| = |h_2|$
- potential stability $\Rightarrow \eta_2 \ge 4|\eta_1|$

requiring η -corrections to be smaller than MSSM mass matrix elements \Rightarrow only η_2 can change the tree-level bound $m_h \leq m_Z$ but marginally Relaxing the condition on potential positivity: guaranteed by dim-6 ops

only one dim-6 along the D-flat direction induced by dim-5: $\propto \eta_1^2$

$$W = \eta_1(H_1H_2)^2 \longrightarrow V = \left|\frac{\partial W}{\partial H_i}\right|^2 \sim \eta_1^2 |H_1H_2|^2 \left(|H_1|^2 + |H_2|^2\right)$$

- tree-level mass can increase significantly
- bigger parameter space for LSP being dark matter

Bernal-Blum-Nir-Losada '09

MSSM Higss with dim-6 operators

dim-6 operators can have an independent scale from dim-5

Classification of all dim-6 contributing to the scalar potential (without SUSY) \Rightarrow

large tan β expansion: $\delta_6 m_h^2 = f v^2 + \cdots$ constant receiving contributions from several operators

$$f \sim f_0 imes \left(\mu^2/M^2, \ m_S^2/M^2, \ \mu m_S/M^2, \ v^2/M^2
ight)$$

 $m_S=1$ TeV, M=10 TeV, $f_0\sim 1-2.5$ for each operator

 $\Rightarrow m_h \simeq 103 - 119 \text{ GeV}$

 \Rightarrow MSSM with dim-5 and dim-6 operators:

possible resolution of the MSSM fine-tuning problem [10]

Couplings of the new boson vs SM

exclusion : spin 2 and pseudoscalar at 95% CL

Agreement with Standard Model expectation at $\sim 2\,\sigma$

Can the SM be valid at high energies?

Degrassi-Di Vita-Elias Miró-Espinosa-Giudice-Isidori-Strumia '12

Instability of the SM Higgs potential \Rightarrow metastability of the EW vacuum

 $\lambda=0$ at a scale $\geq 10^{10}~{
m GeV} \Rightarrow m_{H}=126\pm 3~{
m GeV}$

Ibanez-Valenzuela '13

If the weak scale is tuned \Rightarrow split supersymmetry is a possibility Arkani Hamed-Dimopoulos '04, Giudice-Romaninio '04

- natural splitting: gauginos, higgsinos carry R-symmetry, scalars do not
- main good properties of SUSY are maintained gauge coupling unification and dark matter candidate
- also no dangerous FCNC, CP violation, ...
- experimentally allowed Higgs mass \Rightarrow 'moderate' split

 $m_S \sim$ few - thousands TeV

gauginos: a loop factor lighter than scalars ($\sim m_{3/2}$)

• natural string framework: intersecting (or magnetized) branes

IA-Dimopoulos '04

D-brane stacks are supersymmetric with massless gauginos intersections have chiral fermions with broken SUSY & massive scalars

Giudice-Strumia '11

Predicted range for the Higgs mass

D-brane embedding of the Standard Model

Generic spectrum: N coincident branes $\Rightarrow U(N)$

a-stack

```
endpoint transformation: N_a or \overline{N}_a U(1)_a charge: +1 or -1

\Rightarrow "baryon" number
```

- open strings from the same stack \Rightarrow adjoint gauge multiplets of $U(N_a)$
- stretched between two stacks \Rightarrow bifundamentals of $U(N_a) \times U(N_b)$

a-stack

non-oriented strings \Rightarrow also:

- orthogonal and symplectic groups SO(N), Sp(N)
- matter in antisymmetric + symmetric reps

An extra U(1) can also cure the instability problem Anchordoqui-IA-Goldberg-Huang-Lüst-Taylor-Vicek '12

usually associated to known global symmetries of the SM: B, L, \ldots

- B anomalous and superheavy
- B L massless at the string scale (no associated 6d anomaly) but broken at TeV by a scalar VEV with the quantum numbers of N_R
- L-violation from higher-dim operators suppressed by the string scale
- U(3) unification, Y combination \Rightarrow 2 parameters: 1 coupling + $m_{Z''}$
- perturbativity $\Rightarrow 0.5 \lesssim g_{U(1)_R} \lesssim 1$ [26]
- interesting LHC phenomenology and cosmology [27]

Standard Model on D-branes : SM⁺⁺

Green-Schwarz anomaly cancellation

$$= k_I^A \sim \operatorname{Tr} Q_A Q_I^2 \to \operatorname{axion} \theta : \delta A = d\Lambda \quad \delta \theta = -m_A \Lambda$$
$$-\frac{1}{4g_I^2} F_I^2 - \frac{1}{2} (d\theta + m_A A)^2 + \frac{\theta}{m_A} k_I^A \operatorname{Tr} F_I \wedge F_I$$
cancel the anomaly

D-brane models: $U(1)_A$ gauge boson acquires a mass but global symmetry remains in perturbation theory string theory: θ = Poincaré dual of a 2-form $d\theta = *dB_2$ [23]

- Rotation of U(1)'s from the string to low energy basis Z, Z', Z'':
 completely fixed in terms of the couplings
 - Decoupling of anomalous $Z' \simeq B$
 - Z'' linear combination of B L and $U(1)_R$
- Recent cosmological observations indicate extra relativistic component dark radiation parametrized by an effective ν -number close to 4 * \rightarrow use the 3 ν_R 's interacting with SM fermions via Z'' data: their decoupling during the quark-hadron transition

 \Rightarrow 3.5 $\lesssim M_{Z''} \lesssim$ 7 TeV (within LHC14 discovery potential) * before Planck results

Fig. 1. Marginalized joint 68% and 95% CL regions for n_s and $r_{1,002}$ from *Planck* in combination with other data sets compared to the theoretical predictions of selected inflationary models.

AAGHLTV '12

Scalar potential:

 $V(H, H'') = \mu^{2} |H|^{2} + {\mu'}^{2} |H''|^{2} + \lambda_{1} |H|^{4} + \lambda_{2} |H''|^{4} + \lambda_{3} |H|^{2} |H''|^{2}$

5 parameters \Rightarrow v, m_h, v'', m_{h''} + a scalar mixing angle α

 \Rightarrow 3 free parameters : $m_{h''}, \alpha, v'' \leftrightarrow M_{Z''}$

Stability conditions: $\lambda_1 > 0$, $\lambda_2 > 0$, $\lambda_1 \lambda_2 > \frac{1}{4} \lambda_3^2$

RGE analysis up to $M_s \Rightarrow$ stability is possible in SM⁺⁺

for $0.02 \lesssim |\alpha| \lesssim 0.35$ and 500 GeV $\lesssim m_{h''} \lesssim 5$ TeV

Alternative answer: Low UV cutoff $\Lambda \sim \text{TeV}$

- low scale gravity \Rightarrow extra dimensions: large flat or warped
- low string scale \Rightarrow low scale gravity, ultra weak string coupling

 $M_{s} \sim 1 \text{ TeV} \Rightarrow \text{volume } R_{\perp}^{n} = 10^{32} l_{s}^{n}$ [48] $(R_{\perp} \sim .1 - 10^{-13} \text{ mm for } n = 2 - 6)$

- spectacular model independent predictions
- radical change of high energy physics at the TeV scale

Moreover no little hierarchy problem:

radiative electroweak symmetry breaking with no logs

 $\Lambda \sim$ a few TeV and $m_{H}^{2} =$ a loop factor $imes \Lambda^{2}$ [12] [35]

But unification has to be probably dropped

New Dark Matter candidates e.g. in the extra dims

Braneworld

I.A.-Arkani-Hamed-Dimopoulos-Dvali '98

2 types of compact extra dimensions:

• parallel (d_{\parallel}) : $\lesssim 10^{-16}$ cm (TeV) • transverse (\perp): $\lesssim 0.1$ mm (meV)

Adelberger et al. '06

 ${\it R}_{\perp} \lesssim$ 45 $\mu{\rm m}$ at 95% CL

• dark-energy length scale pprox 85 μ m

Framework of type I string theory \Rightarrow D-brane world

- gravity: closed strings propagating in 10 dims
- gauge interactions: open strings with their ends attached on D-branes

Dimensions of finite size: n transverse 6 - n parallel

calculability \Rightarrow $R_{\parallel} \simeq I_{\rm string}$; R_{\perp} arbitrary

 $M_P^2 \simeq \frac{1}{g_s^2} M_s^{2+n} R_{\perp}^n$ $g_s = \alpha$: weak string coupling Planck mass in 4 + *n* dims: M_*^{2+n}

 $M_s \sim 1 \text{ TeV} \Rightarrow R_{\perp}^n = 10^{32} l_s^n$

small $M_s/M_P \Rightarrow$ extra-large R_\perp

distances $< R_{\perp}$: gravity (4+*n*)-dim \rightarrow strong at 10⁻¹⁶ cm [31]

Origin of EW symmetry breaking?

possible answer: radiative breaking I.A.-Benakli-Quiros '00 $V = \mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$ $\mu^2 = 0$ at tree but becomes < 0 at one loop non-susy vacuum simplest case: one scalar doublet from the same brane \Rightarrow tree-level V same as susy: $\lambda = \frac{1}{8}(g_2^2 + g'^2)$ D-terms $\mu^2 = -g^2 \varepsilon^2 M_s^2 \leftarrow \text{effective UV cutoff}$ $e^{2}(R) = \frac{R^{3}}{2\pi^{2}} \int_{0}^{\infty} dll^{3/2} \frac{\theta_{2}^{4}}{16l^{4}\eta^{12}} \left(il + \frac{1}{2}\right) \sum n^{2} e^{-2\pi n^{2}R^{2}l}$

Accelerator signatures: 4 different scales

- Gravitational radiation in the bulk \Rightarrow missing energy present LHC bounds: $M_* \gtrsim 3-5$ TeV
- Massive string vibrations \Rightarrow e.g. resonances in dijet distribution [40]

 $M_j^2 = M_0^2 + M_s^2 j$; maximal spin: j + 1

higher spin excitations of quarks and gluons with strong interactions present LHC limits: $M_s\gtrsim 5~{
m TeV}$

• Large TeV dimensions \Rightarrow KK resonances of SM gauge bosons I.A. '90

$$M_k^2 = M_0^2 + k^2/R^2$$
; $k = \pm 1, \pm 2, \dots$

experimental limits: $R^{-1} \gtrsim 0.5 - 4$ TeV (UED - localized fermions)^[42]

• extra U(1)'s and anomaly induced terms

masses suppressed by a loop factor from M_s [46]

String-size black hole energy threshold : $M_{
m BH}\simeq M_s/g_s^2$

Horowitz-Polchinski '96, Meade-Randall '07

- string size black hole: $r_H \sim l_s = M_s^{-1}$
- black hole mass: $M_{\rm BH} \sim r_H^{d-3}/G_N$ $G_N \sim I_s^{d-2}g_s^2$

weakly coupled theory \Rightarrow strong gravity effects occur much above M_s , M_* $g_s \sim 0.1$ (gauge coupling) $\Rightarrow M_{\rm BH} \sim 100 M_s$

Comparison with Regge excitations : $M_j = M_s \sqrt{j} \Rightarrow$

production of $j\sim 1/g_s^4\sim 10^4$ string states before reach $M_{\rm BH}$

Universal deviation from Standard Model in jet distribution

 $M_s = 2 \text{ TeV}$ Width = 15-150 GeV

Anchordoqui-Goldberg-Lüst-Nawata-Taylor-Stieberger '08 [37]

Tree level superstring amplitudes involving at most 2 fermions and gluons: model independent for any compactification, # of susy's, even none no intermediate exchange of KK, windings or graviton emmission Universal sum over infinite exchange of string (Regge) excitations [37]

Partonic Luminosity Parton luminosities in pp above TeV are dominated by gq, gg \Rightarrow model independent 10 $gq \rightarrow gq, gg \rightarrow gg, gg \rightarrow q\bar{q}$ 10 10 3 5

M_s(TeV)

Localized fermions (on 3-brane intersections)

 \Rightarrow single production of KK modes

I.A.-Benakli '94

• strong bounds indirect effects

• new resonances but at most n = 1

Otherwise KK momentum conservation [44]

 \Rightarrow pair production of KK modes (universal dims)

- weak bounds
- no resonances
- \bullet lightest KK stable \Rightarrow dark matter candidate

Servant-Tait '02

UED hadron collider phenomenology

- large rates for KK-quark and KK-gluon production LHC: 1-100 pb for $R^{-1} \lesssim 800~{\rm GeV}$
- cascade decays via KK-W bosons and KK-leptons
 determine particle properties from different distributions
- missing energy from LKP: weakly interacting escaping detection
- phenomenology similar to supersymmetry

spin determination important for distinguishing SUSY and UED [37]

gluino	1/2	KK-gluon	1
squark	0	KK-quark	1/2
chargino	1/2	KK- <i>W</i> boson	1
slepton	0	KK-lepton	1/2
neutralino	1/2	KK-Z boson	1

SUSY vs UED signals at LHC

Example: jet dilepton final state

SUSY

UED

Extra U(1)'s and anomaly induced terms

masses suppressed by a loop factor

usually associated to known global symmetries of the SM

(anomalous or not) such as (combinations of)

Baryon and Lepton number, or PQ symmetry

Two kinds of massive U(1)'s: I.A.-Kiritsis-Rizos '02

- 4d anomalous U(1)'s: $M_A \simeq g_A M_s$
- 4d non-anomalous U(1)'s: (but masses related to 6d anomalies)

 $M_{NA} \simeq g_A M_s V_2 \leftarrow (6d \rightarrow 4d)$ internal space $\Rightarrow M_{NA} \ge M_A$

or massless in the absence of such anomalies [24]

TeV string scale Anchordogui-IA-Goldberg-Huang-Lüst-Taylor '11

- B and L become massive due to anomalies Green-Schwarz terms
- the global symmetries remain in perturbation
 - Baryon number \Rightarrow proton stability
 - Lepton number \Rightarrow protect small neutrino masses

- Lepton number \Rightarrow process _ no Lepton number $\Rightarrow \frac{1}{M_s}LLHH \rightarrow$ Majorana mass: $\frac{\langle H \rangle^2}{M_s}LL$ $\swarrow \sim$ GeV

• $B, L \Rightarrow$ extra Z's

with possible leptophobic couplings leading to CDF-type Wij events $Z' \simeq B$ lighter than 4d anomaly free $Z'' \simeq B - L$

More general framework: large number of species

N particle species \Rightarrow lower quantum gravity scale : $M_*^2 = M_p^2/N$

Dvali '07, Dvali, Redi, Brustein, Veneziano, Gomez, Lüst '07-'10 derivation from: black hole evaporation or quantum information storage

 $M_* \simeq 1 \text{ TeV} \Rightarrow N \sim 10^{32}$ particle species !

- 2 ways to realize it lowering the string scale
 - Large extra dimensions SM on D-branes [31]

 $N = R_{\perp}^n l_s^n$: number of KK modes up to energies of order $M_* \simeq M_s$

Iffective number of string modes contributing to the BH bound

 $N = \frac{1}{g_s^2}$ with $g_s \simeq 10^{-16}$ SM on NS5-branes

I.A.-Pioline '99, I.A.-Dimopoulos-Giveon '01

More general framework: large number of species

N particle species \Rightarrow lower quantum gravity scale : $M_*^2 = M_p^2/N$

Dvali '07, Dvali, Redi, Brustein, Veneziano, Gomez, Lüst '07-'10 derivation from: black hole evaporation or quantum information storage Pixel of size L containing N species storing information:

localization energy $E \gtrsim N/L \rightarrow$ Schwarzschild radius $R_s = N/(LM_p^2)$

no collapse to a black hole : $L \gtrsim R_s \Rightarrow L \gtrsim \sqrt{N}/M_p = 1/M_*$

 $M_* \simeq 1 \text{ TeV} \Rightarrow N \sim 10^{32}$ particle species !

Gauge/Gravity duality \Rightarrow toy 5d bulk model

Gravity background : near horizon geometry (holography) Maldacena '98

Analogy from D3-branes : AdS_5

NS-5 branes : $(\mathcal{M}_6 \otimes \mathbb{R}_+)$ inear dilaton background in 5d flat string-frame metric $\Phi = -\alpha |y|$ Aharony-Berkooz-Kutasov-Seiberg '98

"cut" the space of the extra dimension \Rightarrow gravity on the brane

$$S_{bulk} = \int d^4x \int_0^{r_c} dy \sqrt{-g} e^{-\Phi} \left(M_5^3 R + M_5^3 (\nabla \Phi)^2 - \Lambda \right)$$
$$S_{vis(hid)} = \int d^4x \sqrt{-g} \left(e^{-\Phi} \right) \left(L_{SM(hid)} - T_{vis(hid)} \right)$$

Tuning conditions: $T_{vis} = -T_{hid} \leftrightarrow \Lambda < 0$ [52]

Constant dilaton and AdS metric : Randal Sundrum model

spacetime = slice of AdS₅ : $ds^2 = e^{-2k|y|}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + dy^2$ $k^2 \sim \Lambda/M_5^3$

• exponential hierarchy: $M_W = M_P e^{-2kr_c}$ $M_P^2 \sim M_5^3/k$ $M_5 \sim M_{GUT}$

• 4d gravity localized on the UV-brane, but KK gravitons on the IR $m_n = c_n \, k \, e^{-2kr_c} \sim \text{TeV}$ $c_n \simeq (n + 1/4)$ for large n \Rightarrow spin-2 TeV resonances in di-lepton or di-jet channels

Linear dilaton background IA-Arvanitaki-Dimopoulos-Giveon '11

dilaton $\Phi = -\alpha |y|$ and flat metric \Rightarrow

$$g_s^2 = e^{-lpha|y|}$$
; $ds^2 = e^{rac{2}{3}lpha|y|} (\eta_{\mu
u} dx^\mu dx^
u + dy^2) \leftarrow ext{Einstein frame}$

 $z \sim e^{\alpha y/3} \Rightarrow$ polynomial warp factor + log varying dilaton

• exponential hierarchy: $g_s^2 = e^{-\alpha|y|}$ $M_P^2 \sim \frac{M_5^3}{\alpha} e^{\alpha r_c}$ $\alpha \equiv k_{RS}$

4d graviton flat, KK gravitons localized near SM

LST KK graviton phenomenology

• KK spectrum :
$$m_n^2 = \left(\frac{n\pi}{r_c}\right)^2 + \frac{\alpha^2}{4}$$
; $n = 1, 2, \dots$

 \Rightarrow mass gap + dense KK modes $\alpha \sim 1$ TeV $r_c^{-1} \sim 30$ GeV

• couplings :
$$\frac{1}{\Lambda_n} \sim \frac{1}{(\alpha r_c)M_5}$$

 \Rightarrow extra suppression by a factor $(\alpha r_c) \simeq 30$

• width :
$$1/(\alpha r_c)^2$$
 suppression $\sim 1 \text{ GeV}$

 \Rightarrow narrow resonant peaks in di-lepton or di-jet channels

• extrapolates between RS and flat extra dims (n = 1)

 \Rightarrow distinct experimental signals

Conclusions

• Higgs discovery at the LHC:

important milestone of the LHC research program

- Precise measurement of its couplings is of primary importance
- Hint on the origin of mass hierarchy and of BSM physics
 - natural or unnatural SUSY?
 - Iow string scale in some realization?
 - something new and unexpected?

all options are still open

• LHC enters a new era with possible new discoveries

The LHC timeline

LS1 Machine Consolidation

LS2 Machine upgrades for high Luminosity

- Collimation
- Cryogenics
- · Injector upgrade for high intensity (lower emittance)
- · Phase I for ATLAS : Pixel upgrade, FTK, and new small wheel

LS3 Machine upgrades for high Luminosity

- Upgrade interaction region
- · Crab cavities?
- Phase II: full replacement of tracker, new trigger scheme (add L0), readout electronics.

Europe's top priority should be the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting ten times more data than in the initial design, by around 2030.

	2009	Start of LHC
		Run 1, 7+8 TeV, ~25 fb ⁻¹ int. lumi
	2013/14	Prepare LHC for design E & lumi LS1
		Collect ~30 fb ⁻¹ per year at 13/14 TeV
	2018	Phase-1 upgrade LS2 ultimate lumi
		Twice nominal lumi at 14 TeV, ~100 fb ⁻¹ per year
	~2022	Phase-2 upgrade LS3
	1	to HL-LHC
		x200 fb=1 per veer
e d		run up to $> 3 ab^{-1}$
		collected
э л	÷	

IHC timeline

There is a strong scientific case for an electron-positron collider, complementary to the LHC, that can study the properties of the Higgs boson and other particles with unprecedented precision and whose energy can be upgraded. The Technical Design Report of the International Linear Collider (ILC) has been completed, with large European participation. The initiative from the Japanese particle physics community to host the ILC in Japan is most welcome, and European groups are eager to participate. *Europe looks forward to a proposal from Japan to discuss a possible participation*.