Gain, Stability, and TTS for September measurement

October 19th, 2018

Haruya Morikawa Tokyo Institute of Technology

Index

- Introduction
- Gain
- Stability
- TTS
- Peak to Valley Ratio
- Summary

- Charge and Time histograms
- Monitor PMT histograms

Introduction

- These slides summarize the measurement in September.
 - the measurement for negative HV at the 28th of September.
- The differences from the measurement in July is-
 - -the LED current and time width
 - the current increased and the time width decreased, keeping the LED intensity which means the number of emitted photons from LED per unit time.
 - this change was made to avoid the LED instability which influences the TTS enlargement.
 - -the size of the lens placed btw the LED and the 3"PMT
 - it got smaller: Φ 140.5 mm \rightarrow Φ 75.0 mm

Gain: Introduction

 The Fitting function is the product of Poisson distribution and Gaussian distribution:

$$arg = x - Q_0$$

$$S_{\text{ped}} = \frac{1 - W}{\sqrt{2\pi\sigma_0}} \exp\left(-\frac{1}{2} \left(\frac{arg}{\sigma_0}\right)^2 - \mu\right)$$

p0	p1	p2	р3	р4
Q_0	σ_0	W	α	μ

р5	p6	р7	p8
σ_1	Q_1	$Q_{ m sh}$	Norm

$$S_{\text{noise}} = \alpha W \exp(-\alpha \cdot arg - \mu), \ 0 \ (\text{if } arg < 0)$$

$$S_{\text{sig1}} = \frac{\mu^k e^{-\mu}}{\sqrt{2\pi}\sigma_1} \exp\left(-\frac{1}{2} \left(\frac{arg - Q_1 - Q_{\text{sh}}}{\sigma_1}\right)^2\right)$$

$$S_{\text{sigN}} = \sum_{n=2}^{10} \frac{\mu^k e^{-\mu}}{n!} \cdot \frac{1}{\sqrt{2\pi n}\sigma_1} \exp\left(-\frac{1}{2n} \left(\frac{arg - nQ_1 - Q_{\text{sh}}}{\sigma_1}\right)^2\right)$$

$$\int \sigma_1 \to \sqrt{\sum_{k=1}^n \sigma_1} = \sqrt{n\sigma_1}$$

Gain: plots

- Stat. error only.
- No special differences is seen.

Stability: Introduction

 In this plots, the normalized Poisson mean is drawn which is normalized by Monitor PMT mean in order to exclude circumstance influences:

Normalized Poisson mean
$$=$$
 $\frac{\text{Poisson mean}}{\text{Monitor PMT mean}}$

- Normalized Poisson mean is ideally considered to be stable against HV because Poisson mean doesn't depend on HV for 3" PMT.
- Poisson mean is obtained from a fitting to the corresponding charge histogram.
 Monitor PMT mean is equal to a mean of charge histogram not Poisson mean of that.

Stability: plots

- Stat. error only.
- The result in Sep. is seen above the ones in Jul.
 - the Monitor PMT mean got smaller. (→ the next page)

Stability: Monitor PMT mean

- The measurement was done in order from 1300 V to 1000 V.
 - LED intensity might increase over time.
- Monitor PMT mean got smaller than in July. Possibility is:
 - changed LED current and time width
 - LED fiber was broken not only 10 %. already broken in July (slightly different even among the measurement in Jul.).
 - Big gap btw Jul. and Sep. result from temperature or humidity.

TTS: Introduction

The fitting function is

$$\frac{p_0}{2} \exp\left\{-p_1 \times \frac{(x-p_3) - p_2^2 \cdot p_1}{2}\right\} \times \left[1 + \operatorname{erf}\left(\frac{(x-p_3) - p_2^2 \cdot p_1}{\sqrt{2}p_2}\right)\right] + p_4$$

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

- The fitting to the time histogram is firstly done btw tmin and tmax.
 - tmin = GetBinCenter(maximum bin 20)
 - tmax = GetBinCenter(maximum bin + 40)
- Then, p4 is set to zero and FWHM is looked for as TTS.
- When making a time histogram, 1 photoelectron events are used within +/- 1 sigma in a charge histogram.

TTS: plots 1 (only 1 photoelectron events)

TTS (negative HV 20180928)

- Stat. error only.
 - the parameter p2 is probably responsible for the width, so its error was brought as statistical errors of the TTS.

TTS: plots 2

Black: 0 to 100 [$e \times 10^7$ C] events

Pink: 1 photoelectron events

within +/- 1 sigma in a charge histogram.

Black locates below Pink in lower HV.

- My opinion: this enlargement of 1 p.e. TTS could be caused by noise events which is not haven by Black and they exist within 1 sigma from 1 p.e. (exist in under 0 C).
- to investigate: check the mean and width for each photoelectron event. Because there are 2 cases: width become smaller at high p.e. and-
 - -mean doesn't change → total TTS gets smaller.
 - -mean changes (shift) \rightarrow total TTS gets bigger.

Peak to Valley Ratio: Introduction

the ratio is given by

value at Q_1

minimum value between Q_0 and Q_1

using the values of fitted function (= qFunction)

 this value would be useful to find lower limit of operating voltage. this is decided by looking for the constant region where the ratio is unchangeable for voltage.

Peak to Valley Ratio: plots

Peak to Valley Ratio

No error applied.

- Why did the result in Sep. change, although the result of Gain is consistent with the ones in Jul.?
 - LED performance: which is the same reason as the Monitor PMT mean change
 - Lens which makes Uniform light different: in Sep. the smaller one is used

Summary

Gain

the result is consistent with the previous result.

Stability

stable in higher HV, but the upward trend is seen in lower HV.

TTS

- There is upward trend as it goes towards low HV.
- This feature is reasonable, because in higher HV, photoelectrons produced at the photocathode directly get going to the anode.
- To investigate the reason of the difference btw 1 p.e. and all output.

Peak to Valley ratio

• the behavior is similar with the result in July, but slightly different. need to investigate it.

Charge and Time histograms

Charge histogram in Log y scale

Time histogram for 1 photoelectron Range: tmin to tmax

Time histogram for 1 photoelectron in Log y scale

Time histogram for 0 to 100 [$e \times 10^7$ C] in Log y scale

• In a time histogram:

The bump under the -40 ns is due to pedestal.

The tiny bump around 10 ns in a time histogram is caused by ...?

→ to investigate (after pulse?)

charge histogram (-1300 HV 20180928)

time histogram (-1300 V 20180928)

time histogram (-1300 V 20180928)

time histogram (-1300 V 20180928)

charge histogram (-1250 HV 20180928)

time histogram (-1250 V 20180928)

time histogram (-1250 V 20180928)

time histogram (-1250 V 20180928)

charge histogram (-1200 HV 20180928)

time histogram (-1200 V 20180928)

time histogram (-1200 V 20180928)

time histogram (-1200 V 20180928)

charge histogram (-1150 HV 20180928)

time histogram (-1150 V 20180928)

time histogram (-1150 V 20180928)

time histogram (-1150 V 20180928)

charge histogram (-1100 HV 20180928)

time histogram (-1100 V 20180928)

time histogram (-1100 V 20180928)

time histogram (-1100 V 20180928)

charge histogram (-1050 HV 20180928)

time histogram (-1050 V 20180928)

time histogram (-1050 V 20180928)

time histogram (-1050 V 20180928)

Monitor PMT histogram

- "Monitor PMT mean" is equal to the mean of the histogram.
- Fitting function is the same as 3" PMT charge histograms, but fit result has less meanings because each parameter doesn't reflect its own physical meaning.
 - for example, p6 is a mean value of charge, but it's obviously small.
 - though fits goes well thanks to lots of parameters.

charge [e × 107 C]

charge hist. Monitor PMT (-1200 HV 20180928)

charge hist. Monitor PMT (-1050 HV 20180928)

charge hist. Monitor PMT (-1150 HV 20180928)

charge hist. Monitor PMT (-1000 HV 20180928)

