Status Report

December 7th, 2018

Haruya Morikawa Tokyo Institute of Technology

In this week...

- Bump in pedestal
 - Brought the waveforms of the bumps in charge hist. (but how do I show these waveforms, there are lots of events?)
 - Considered the method of calculating a baseline:
 - check charge histograms while changing the method of calculating the baseline.
- Investigation of a bump in a time histogram in terms of an afterpulse.
 - though a bump doesn't seem to affect TTS calculation
- Stability for 3"PMT PMT
- Light Uniformity
 - need to enlarge light?
- The measurement was done for BC0035 / negative HV
- And the some data are processing:
 - the dependence on pos./neg. HV for BC0035 and on pos. HV for BC0038
 - the TTS dependence on number of p.e. for BC0035/38.

Waveform of pedestal bump

Extract the bump event

- with the restriction from charge value
- we can check these waveforms in "testHMDec04_bumpWaveform.root"
- it doesn't seem there are some significant characteristics.

Method of calculating a baseline

- Orange+5: previous method (not Gaussian fit)
- Magenta: Gaussian fit
- kSpring+5: excluded area=100 nsec
 - calculate a baseline in all area on both sides of the excluded area (i.e. in green area)
- Azure+7: excluded area=50 nsec
 - same as kSpring method

Bump in time histogram

time histogram (-1200 V 20180928)

time histogram (-1200 V 20181204 run=511)

- Whether a after-pulse causes the bump?
 - this is only a brief check.
- Change trigger frequency
 - getting more lower frequency, a width of trigger pulse will increase
- But the bump still exists
 - the result suggests the bump doesn't come from after-pulses.

Stability: 3"PMT (2.5 hours leaving LED and Monitor on)

Poisson Mean (negative HV 20181204)

3"PMT/Monitor Mean (negative HV 20181204)

Monitor Mean (4.800000 V 20181204)

Light Uniformity

position [cm] left <-> right	-3	-2	-1	0	+1
"backward" Mean of charge hist. (Poiss. mean)	0.9677+/-0.0036 (0.7937+-0.0039)	0.9844+/-0.0036 (0.8078+/-0.0039)	0.9841+/-0.0036 (0.7893+-0.0039)	0.9697+/-0.0035 (0.7705+/-0.0036)	0.9594+/-0.0031 (0.7667+/-0.0033)
Mean of charge hist. (Poiss. mean)	1.035+/-0.003 (0.8458+/-0.0035)	1.055+/-0.004 (0.8642+/-0.0041)	1.09+/-0.004 (0.8912+/-0.0047)	1.091+/-0.004 (0.8869+/-0.0047)	

- "backward": have 3"PMT away from the lens by ~1 cm
 - to get more enlarged light, but sometimes 3"PMT is pushed by the wall and moves a bit.
- we need at least 2 cm uniformity for the reflector meas.
 - in the current situation, the size of light area might not enough?

Summary and to do

- Stability...
 - 3"PMT itself looks like more stable than Monitor/LED.
 - Monitor/LED increase depends on...?
- Measure the uniformity
 - need to enlarge the light size?
- TTS plots against # of p.e.
 - measurement had already done, only need to process.
- Gain/TTS for BC0035
 - and positive HV for BC0038
- Reflector measurement
 - compare number of p.e.