Status Report

December 14th, 2018

Haruya Morikawa Tokyo Institute of Technology

Abstract

- Different Methods to calculate baseline
 - test using the data set which has a bump in the charge histogram
- HV vs. Gain/TTS plots
 - Negative/Positive HV for BC0035/38
 - for BC0038 the fit was failed, too high intensity or
- # of p.e. vs TTS plots
 - Negative/Positive HV for BC0035
- Light Uniformity -> Changed each distance
 - 3"PMT became closer to the lens
 - LED was moved away from the lens
 - -> check in next week
- Monitor PMT Instability
 - Monitor PMT was returned in the uniform set.
 - -> check in next week

Method of calculating a baseline

- **kOrange+5**: previous method (not Gaussian fit)
 - Calculate 100 ns region which has a signal (= above excluded area)
- kMagenta: Gaussian fit
 - Same region as the Orange method
- kSpring+5: excluded area=100 nsec
 - Calculate a baseline in all area on both sides of the excluded area (i.e. in green area)
- kAzure+7: excluded area=50 nsec
 - Same as the Spring method

Method of calculating a baseline

- **kOrange+5**: previous method (not Gaussian fit)
 - Calculate 100 ns region which has a signal (= above excluded area)
- kMagenta: Gaussian fit
 - Same region as the Orange method
- kSpring+5: excluded area=100 nsec
 - Calculate a baseline in all area on both sides of the excluded area (i.e. in green area)
- kAzure+7: excluded area=50 nsec
 - Same as the Spring method

Gain

- BC0035 has about twice value of Gain compared with BC0038.
- There isn't significant difference in negative/positive HV.

TTS [nsec]	-1250 V	+ 1250V
BC0035	1.451+/-0.004	1.479+/-0.006
BC0038	1.292+/-0.006	

• BC0038 has better TTS by ~0.2 nsec compared to BC0038.

TTS vs #pe

- For BC0035.
- Fitting function: par[0]/ \sqrt{x} -> failed
- p6 is the mean of 1pe dist.
 - #pe events were chosen as #pe×p6 with 0.5σ of 1pe.
 - e.g. 2pe, 2×p6+/-0.5σ.

TTS vs #pe (Update!)

charge [$e \times 10^7$ C]

Summary

- If there is no problem, I would like to adopt the methods to calculate a baseline outside of a signal area (not Gaussian fit) for quick processing.
 - cf. 100 nsec signal area is selected by the algorithm following FindEdge() function.
- Gain/TTS/TTS for #pe
 - need to re-measure for positive HV of BC0038

- Stability -> to measure in next week
- Light uniformity for Reflector -> need the help.