Supernova Relic Neutrino Search with Hyper Kamiokande

Takatomi Yano (Okayama Univ.) for HK-Astro WG

3rd Open Meeting for Hyper Kamokande

21th June 2013. At Kavli IPMU, Tokyo Univ.

Motivation of this study

Motivation

To study the effect of the location (depth) on SRN search with HK.

Spallation rate $\times 1$, $\times 3$, $\times 4$, $\times 5$ and $\times 7$ of SK case are studied.

Shimizu-san studied HK will have $\times 5 \mu$ rate and $\times 4$ spallation rate.

Contents

- 1. Updates
 - Signal efficiency with more muons.
 - Remaining spallation events with 80% signal efficiency.

2. SRN spectrum sensitivity with Hyper Kamiokande.

Current status of SRN search with SK

Supernova Relic Neutrino is diffused neutrino background from supernovae > ~Mpc.

Recent SRN search was done with single positron tag analysis.

(K.Bays et al., Phys.Rev.D85, 052007 (2012))

• SRN Flux < 1.7× LMA Flux (90%CL)

A new spallation likelihood cut (**relic spallation cut**) was applied. The effect of more spallation on the new cut was studied last time.

Spallation cut in SK

SK-II relic spallation likelihood and event samples are used for estimating HK. (SK-II: photo coverage 19%)

Remaining spallation events

Update : Solar neutrino events in remaining samples are removed, with directional and multiple scattering goodness cut.

Remaining spallation events (Updated)

2nd HK open meeting

	spallation ×1	×2	×3	×5	×7	×10	
Signal Efficiency	80%	79%	78%	78%	79%	77%	
Remaining spallation rate	7%	7%	8%	9%	9%	10%	
Updated					New		
	spallation ×1	×2	×3	×4	×5	×7	
Signal Efficiency	80%	81%	81%	80%	80%	81%	
Remaining spallation	1.2%	2.1%	2.5%	3.0%	3.9%	4.6%	
Tate							

- With ×4 spallation events, the remaining spallation rate will be increased by a factor of 2.5.
- Considering the cosmic muon rate of ×5, the remaining spallation products in HK after relic spallation cut will be 15%.
- With current SK and solar spallation cut, the remaining spallation products is 5~6%.

Corresponding study (e.g. solar neutrino analysis) will be done.

Signal efficiency with more cosmic μ

Update : non-0 significance of SRN

of SRN events and non-0 significance

The numbers of observed SRN events (20 - 30 MeV) and

the non-zero significances (n = N_{obs} /[fit error σ]) are shown.

- In ×1spallation case (same rate as SK), the significance will be $\sim 6\sigma$ after 10 years. (It was 7σ at HK 2nd open meeting.)
- In $\times 4$ spallation case, it stays at $\sim 5\sigma$ after 10 years. 4σ for $\times 7$ case.
- The worst case, if only >20 MeV is available for $\times 7$ spallation, it stays below 4σ .

Limit on SRN emitting spectrum

- SK-I, II and III 7.8 years got close to LMA SRN model by factor of 1.7.
- With HK, how close to SRN can we get?

Limit on SRN emitting spectrum Method:

- 1. Fit LMA + BG model with general SRN model with SN ν temperature of 2 to 8 MeV and SN ν intensity.
- 2. Calculate -2 log likelihood for each ν temperature and intensity.
 - Only statistic error is considered here.
- 3. Plot 2D allowed regions for 66%, 90% and 99% C.L..

Summary

- The effect of HK location (more cosmic muon rate) is studied.
- The remaining spallation events, while keeping the signal efficiency at 80%, will be increased to × 2.5 of ×1 spallation case in ×4 spallation case.

In total, 15% remaining spallation events are expected for $\times 5\mu$ and $\times 4$ spallation.

• The significance of SRN will be 6σ after 10 years with HK, if the muon rate is same as SK.

In Tochibora, where the muon rate is $\times 4$ of SK, the significance will be 5σ .

• HK's capability for limiting on SRN emitting spectrum is firstly studied. Lower limit : $T_{\nu} > 2.7$ MeV and $N_{e^+} > 25$ events (×1 μ) $T_{\nu}^{\nu} > 2.4$ MeV and $N_{e^+} > 25$ events (×4 μ) (for $E_{e^+} > 17.5$ MeV, 90% C.L.) True (LMA) : $T_{\nu} = 5.8$ MeV, $N_{e^+} = 58$ events

Appendix

Table 8.1: 90 % CL flux limit ($\bar{\nu} \text{ cm}^{-2} \text{ s}^{-1}$), $E_{\nu} > 17.3 \text{ MeV}$

Model	SK-I	SK-II	SK-III	All	Predicted
Gas Infall (97)	<2.1	<7.5	<7.8	<2.8	0.3
Chemical (97)	<2.2	<7.2	<7.8	<2.8	0.6
Heavy Metal (00)	<2.2	<7.4	<7.8	<2.8	< 1.8
LMA (03)	<2.5	<7.7	<8.0	<2.9	1.7
Failed SN (09)	<2.4	<8.0	<8.4	<3.0	0.7
6 MeV (09)	<2.7	<7.4	<8.7	<3.1	1.5

Appendix

Limit on SRN emitting spectrum

1. Fit LMA + BG model with general SRN model with SN ν temperature of 2 to 8 MeV and SN ν intensity.

- Only statistic error is considered.

- 2. Calculate -2 log likelihood for each ν temperature and intensity.
- 3. Plot 2D allowed regions for 66%, 90% and 99% C.L.

Probability density
function
$$PDF = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(N_{Data} - N_{Model})^2}{2\sigma^2}\right)$$
$$Likelihood = \sum_{Low, Med, High} (2\log\sqrt{2\pi}\sigma + \frac{(N_{Data} - N_{Model})^2}{\sigma^2})$$

Low-energy backgrounds in SK

Spallation products will be increased in HK due to high cosmic-ray muon flux.

Cosmic µ量のSignal Efficiencyへの影響

• Sol cut 前 (HK Collab. Jan. 2013)

Signal Efficiency	Cosmic µ ×1	×2	×3	×5	×7	×10
17.5-20MeV	81%	65%	52%	33%	21%	11%
20-26MeV	90%	81%	74%	59%	46%	35%

• Sol cut, FV cut等 ほぼ全てのcut後 (new)

	1倍	2倍	3倍	5倍	7倍	10倍
17- 20MeV	79 ±4%	62 ±3%	50 ±3%	29 ±2%	17 ±2%	9 ±1%
20- 26MeV	90 ±9%	77 ±9%	73 ±8%	54 ±7%	43 ±6%	34 ±6%