Proposal for a Hyper-K Near Detector

Mike Wilking 3rd Open Hyper-K Meeting 21-June-2013

based on a conglomeration of ideas from Mark Hartz, Akira Konaka, Kevin McFarland, T2K 2km Detector Group, ...

Systematic Errors on δ_{CP}

- T2HK: 10 year run with a 750 kW beam
- With a 5% systematic error on the event rate, δ_{CP} measurement will be systematics limited
- To exploit the full physics potential of T2HK, need to reduce the systematic error to 2%

High Sensitivity to CPV w/ <~5% sys. error

M. Yokoyama 2nd Hyper-K Meeting

Challenges to Get to 2%

• Relating lepton kinematics to neutrino energy

- **nuclear effects** (Fermi motion of target nucleons, off-shell effects, mixing of exclusive final states, multi-nucleon correlations)
- Relying on models (with the help of external cross section measurements) may not be sufficient to reach 2%
- Constraining ve cross sections

•

- v_e cross section data is scarce
- v_{μ} and v_{e} are impacted differently by nuclear form factors
 - Affects can be different for neutrinos and anti-neutrinos (and at 2% level)
 - Could mimic CP violation
 - May be able to constrain form factors with precise $v_{\mu}/\overline{v_{\mu}}$ measurements as well

Off-Axis Effect

- Near detectors with a perfectly known, and preferably tunable, flux would allow a measurement of neutrino energy biases and smearing.
- * How to get this?
- Observation from T2K INGRID team: Low and high tails of flux similar as move off-axis
- Narrow range of neutrino energies where flux changes.

Hartz-McFarland, Energy and Near Detectors

M. Hartz & K. McFarland

2nd Hyper-K Meeting

- As the off-axis angle changes, the neutrino energy spectrum is modified in a ver
- Measuring event properties at several different off-axis angles can provide information about E_{ν} without relying on neutrino interaction models

Detector Concept

A long-tube water Cherenkov detector

- Tube height depends on the distance from the beam target
- Continuous mapping of off-axis angle from **1**° to **4**°
- Same target (water) as the far detector
 - T2K uses different targets at the near and far detector
 - Many non-canceling uncertainties
 - Nucleon initial state model
 - Pionless delta decay
 - Final state interactions
 - Nuclear modifications to the Delta resonance

Neutrino Spectrometer I

- Muon p/theta distribution is measured in each detector slice
- By taking linear combinations of many different slices, can make Gaussian neutrino spectra at various energies
- Just for illustration purposes; actual analysis to extract muon p/θ vs E_v will be more sophisticated

6

 1.5°

Neutrino Spectrometer II

- Gaussian spectra can be produced for any choice of neutrino energy (between ~0.25 and ~1 GeV)
- High energy flux tail is canceled in all cases

Systematic Uncertainties

- Question: How do beam uncertainties affect ability to use off-axis angle to determine neutrino energy?
- Apply **T2K** π^+ production variations to flux linear combinations
 - This is expected to be the dominant flux uncertainty for T2HK
- Spread in neutrino energy due to + production uncertainty is ~0.1%
 - More detailed study needed, but first look is promising!

High Energy Flux Cancelation

- It may be more important to precisely cancel the high energy flux, since v cross sections grow vs E_{ν}
- Can weight flux by E_v to get a rough idea
 - Still able to remove almost all contribution from high energy

ν_{μ} Backgrounds

- For the T2HK δ_{CP} measurement, we wish to measure momentum vs angle distribution of **single-ring muon** events for each neutrino energy
 - Including, e.g., $CC\pi^+$ events where the π^+ is below Cherenkov threshold
 - (some additional separation based on decay electrons may also be useful)
 - This relationship can then be inverted at Hyper-K to produce energy spectrum
- Electrons are rarely misidentified as muons in Super-K (~0.1%)
- Main background is from pion rings

•

- At Super-K, we now have a method to separate some π⁺ background from µ signal
- We can also now select a pure π^+ sample to constrain this background
- (These same tools can also be applied to single-proton backgrounds)
- More details in the fiTQun reconstruction talk tomorrow

- Recent significant improvement to e/π⁰ separation
 - 70% reduction in T2K π^0 background

0.4

0.2

0<u></u>

20

40

60

80

- Water Cherenkov detectors are a very good technology for measuring and constraining NC π^0 production
- More susceptible to entering neutral particles than the ν_{μ} measurement
 - Significant distance between the upstream wall and the FV may be required

Setting the Tube Diameter

- Main requirement is the maximum muon momentum that can be measured (fiducial volume
 - Tube Diameter > Muon range (i.e. max mom.) + Distance between FV and wall
 - Main upstream FV requirement is to separate fully contained muons from entering muons
 - Driven by the vertex resolution
 - Particle ID also degrades if the particle is to close to the wall at which it is pointing (need a "to wall" cut)
 - Electrons are more sensitive to entering backgrounds

- For the electron measurement, the fiducial volume can begin further downstream because electron path length is shorter
 - A 2 GeV electron emits all of its light within 4-5 m

Multi-Channel Plates

- Better timing resolution = better vertex resolution
 - With better vertex resolution, the muon fiducial volume can be expanded closer to the tank wall
- Large area picosecond photon detectors (LAPPDs) can provide single photon hit time resolution of ~50 psec
 - See talk tomorrow by Mayly Sanchez
- Vertex resolution of few centimeters
 - Can use almost the whole tube volume as **FV**
- Also see substructure in rings
 - Time and position of every photon is recorded
 - More information than just adding total charge

Detector Size

The table gives the mass of water in kton

		Tul	Tube Diameter		
Tube Length		5 m	7 m	8 m	10 m
	15 m	0.3	0.6	0.8	1.2
	50 m	1.0	1.9	2.5	3.9
	100 m	2.0	3.8	5.0	7.8

Typical size = few kton

Other Design Considerations

- Water pressure
 - If the water pressure is too high at 100 m, it is possible to break the detector into pieces
- Water quality
 - No need for a Super-K caliber water filtration system
 - Super-K has 80m optical transparency
 - This detector has typical photon transmission distances of ~10-15m
- Event pile-up
 - May be able to reconstruct 2 simultaneous events, especially if the vertices are well separated
 - Michel-tagging efficiency/accuracy is reduced as pile up increases
 - Both problems are helped by moving to the 2 km site

Detector Limitations

•

v & anti-v backgrounds for T2HK

M. Yokoyama 1st Hyper-K Meeting

- The proposed detector does not provide lepton sign selection
 - Cannot separate the wrong-sign background in the anti-v beam
 - Measurements from ND280 to separate these components will be useful
 - Some separation power may be available by looking at μ + π events with and without a Michel tag
- Little information is provided about low energy hadrons exiting the nucleus
 - Not required for the δ_{CP} measurement (this is main principle motivating this detector design)
 - However, more information could, in principle, better constrain residual effects from cross section models

Summary

- Neutrino interaction cross section uncertainties may be the dominant error in a T2HK $\delta_{\rm CP}$ measurement
 - Need 2% uncertainty on event rate to match statistical precision
 - Our understanding of neutrino interactions may not reach this level in time for Hyper-K
- A tall water Cherenkov detector that spans $~1^{\circ}$ to $~4^{\circ}$ off-axis angles can be used to measure muon kinematics vs E_{ν} without relying on a neutrino cross section model
 - Initial look at systematics suggests this method may be robust to beam uncertainties
- Water Cherenkov detectors are also very good at measuring pure samples of electrons
 - Can constrain v_e/v_μ cross section ratio

Electron and Muon Ranges in Water

- Muon range has ~linear dependence on momentum
- Electron range does not strongly depend on momentum above 1 GeV