Calibration source for Hyper-K

Yusuke Koshio for Calibration w.g.
Okayama Univ.
Kavli IPMU, Univ. of Tokyo
2013/06/22: 3rd HK open meeting

Remind

Idea for HK

- (1) Same as SK, LINAC and DT in every position
 - Need if the solar neutrino spectrum is a target. (seems to be very hard.)
- (2) Combination of several tools.
 - Compare LINAC and DT in 40% coverage segmentation (if exist) or SK, and only DT in every position.
- (3) Higher energy calibration is preferable for SN neutrinos
 - Development new sources, e.g. pT generator (19.8MeV γ)

Remind

DT calibration in SK

τ_{1/2}=7.13sec β 4.3 + γ 6.1 (66%) β 10.4MeV (28%) uniformly generated

By Szymon

DT neutron generator

Currently used in SK
Thermo Scientific
Custom MF Physics M A-211
Original cost: ~\$80k
14MeV neutrons

A-211 no longer available from Thermo-Sc.

By Szymon

DT neutron generator

DTG-MP 320

~\$75k+10k

Specification

Yield	1.0 E+08 n/s		
Neutron Energy	14MeV		
Duty Factor	5% to 100%		
Voltage	90 kV (Maximum Accelerator)		
Current	60 μA (Beam)		
Neutron Module	12.07 x 57.15 cm		
Safety Features	keylock : on/off		
	Emergency : on/off		
	Normal-open and Normal-close interlocks		
Remote Control	RS-232/RS-485		
Weight	12 kg		

Remind

Other calibrations

Nickel calibration

Ideal one photon level source

- Uniformly generated
- Stable
- easy to handle

by Moriyama-san

^γ (Ni captured) ~9MeV

Used for many purposes:

- 1 p.e. distribution
- QE measurement
- water quality (top-bottom asym.)
- trigger efficiency
- reconstructed vertex calibration
- angular dependence of energy scale
- etc..

Monthly data taking

Principle of Nickel source

- * Capture of thermal neutrons by Nickel, gammas with -9MeV are emitted. (typically 58Ni(n,γ)59Ni)
- * Use 252Cf as a neutron source.
 - * -97% alpha decay and -3% spontaneous fission (SF).
 - * For SF, -3.8 neutrons with -2MeV and -9.7 gammas with -8MeV (total).
- * Protons in water or polyethylene, and nickel are as a neutron moderator (-90 micro sec.)
- * The usual Nickel calibration is done by self trigger from γ events.

Comments on the nickel calibration in SK

- * The calibration method is established.
- * Useful for the initial calibration, (gain determination, QE measurement etc.), the position calibration, the long term stability of the water quality, and so on.
- * Need to develop a new equipment for introducing into the tank.
 - * There are several manual works inside a dark room, now...

Cannot use it for the energy calibration?

Fission trigger

Test data taking in SK-IV

With Nickel ball

Without Nickel ball

Cannot use it for the energy calibration?

The data and MC become good agreement. The energy shift is 0.9%, and resolution is also close.

Summary

- * Several ideas are being considered for the HK calibration.
- * The DT and Nickel is promising though we need to study in more detail.
 - * New apparatus with modification for HK.
 - * How to introduce into the detector.
- * Keep considering different possibilities for source:
 - * pT generator, LINAC, any more.

Cannot use it for the energy calibration?

Reaction	natural abundance	capture cross section	γ energy
	of Nickel (%)	(barns)	(MeV)
58 Ni $(n,\gamma)^{59}$ Ni*	67.88	4.4	9.000
$^{60}\mathrm{Ni}(\mathrm{n},\gamma)^{61}\mathrm{Ni}^*$	26.23	2.6	7.820
$^{62}\mathrm{Ni}(\mathrm{n},\gamma)^{63}\mathrm{Ni}^*$	3.66	15	6.838
$^{64}\mathrm{Ni}(\mathrm{n},\gamma)^{65}\mathrm{Ni}^*$	1.08	1.52	6.098