Updates to the fiTQun **Event Reconstruction** and Interface to WCsim Patrick de Perio (University of Toronto) for Team fiTQun Hyper-Kamiokande Workshop #3 June 22, 2013

Reminder: fiTQun is a maximum likelihood fitter
 – Likelihood function defined with PMT charge and time:

$$L(\mathbf{x}) = \prod_{i} P(i\text{unhit}|\mathbf{x}) \prod_{i} P(i\text{hit}|\mathbf{x}) f_q(q_i|\mathbf{x}) f_t(t_i|\mathbf{x})$$
Unhit probability Hit probability Charge likelihood Time likelihood

- Track parameters (x) varied simultaneously to maximize the likelihood
- Please refer to previous workshops for more details on the algorithm and progress:
 - 1. <u>http://indico.ipmu.jp/indico/getFile.py/access?</u> <u>contribId=35&sessionId=9&resId=0&materialId=slides&confId=7</u>
 - 2. <u>http://indico.ipmu.jp/indico/getFile.py/access?</u> <u>contribId=20&sessionId=10&resId=0&materialId=slides&confId=10</u>

fiTQun-WCSim Interface

Blair Jamieson (U. Winnipeg)

- Implementation is mostly complete
 - fiTQun can be compiled with no dependence on SK internal libraries nor CERNLIB
 - Geometry read directly from WCSim file
 - Hit and time information structure has been generalized from SKDETSIM to also read from WCSim format file

- Some quick studies performed so far:
 - Limited checks of vertex and momentum reconstruction in SK mode

Hit and Charge Information

June 22, 2013

Momentum Reconstruction

• 1 GeV/c electron, random position and direction:

Momentum Reconstruction

Reject events with >1 identified sub-event

Sub-Event Builder Issue

- Recall: *fiTQun* uses a hit-time clustering algorithm
 (*spliTChan*) and a peak-finding algorithm to separate sub-events (e.g. decay-e)
 - Tuned to SKDETSIM SK4 noise + electronics model

- WCSim using SK1 electronics model with *no noise*
 - spliTChan incorrectly dividing the hits
 - Need to understand noise model and electronics, and develop a more generic sub-event builder

Momentum Reconstruction Bias

- Various momenta simulated and reconstructed for μ^{\pm} and e^{\pm} \Re η^{\pm} η^{\pm} η^{\pm} μ^{\pm} μ^{\pm} η^{\pm} η^{\pm}
- electron p_{true})/p_{true} Bias becomes worse -5 towards low energy 1000 1050 p_{e hyp.} (MeV/c) 950 -10 (p_{rec} •e θU Maybe related to the sub-event builder issue •e* -15 But can also be something -20, else (under investigation) 500 1000 1500 2000 2500 3000 p_{true} (MeV/c) fiTQun is very sensitive to differences in 110 MeV/c modeling and tuning electron
 - Single p.e. distributions, digitization model, etc.
 - Recall: Discrepancy in the number of hits, which *n*Hits *n*Hits

Momentum Resolution

• Momentum resolution seems to agree between SKDETSIM and WCSim particle guns

Vertex Resolution

- Vertex reconstruction for high energy events seems to be OK
- Some discrepancy to SKDETSIM below 100 MeV/c

June 22, 2013

Summary of fiTQun-WCSim Interface

- *fiTQun* is running on WCSim output!
- Still some issues observed
 - *Sub-event* builder has some issues with WCSim output
 - Reconstructed momentum biases
- Investigation and additional validation underway
 - Not yet ready for detailed physics analyses
- Some more things to do:
 - Clean up the ROOT ntuple output and combine with WCSim ntuple
 - Develop more generic sub-event building algorithm
 - Optimize PMT angular acceptance, light attenuation and yield parameters to match that of WCSim
 - Capability to scale in size the current (cylindrical) scattering table
 - Generalize light scattering table for non-cylindrical geometry

ALGORITHM UPDATES

Current features (New since Jan.)

- Subevent algorithm Count and fit decay electrons
 - Peak finder, time clustering
 - In-gate decay charge masking & fitting
- Time dependent SK PMT gain correction
- One ring fit (e, μ, π⁺, p, K⁺)
 - Improved high (> 3 GeV/c) momentum reconstruction
 - Reduced $\pi^{\scriptscriptstyle +}$ fit failures by improving momentum seed
- π^0 fit
 - Vertex seed correction
- 2/3/4-ring fits with all possible combinations of e and π^{+} rings

Improved Momentum Reconstruction

- Previous effort focused on tuning fiTQun around T2K peak energy (< 1 GeV)
- At high energy (> ~2 GeV), reconstructed muon or π⁺ momentum had large negative bias

of Events

Number

- Tentatively apply bias correction with stronger constraint on total charge
- Momentum spectrum had spikes due to the roughness of the likelihood surface
 - Apply spline interpolation of the likelihood
- Important for high energy atmospheric neutrino and cosmic ray analyses

June 22, 2013

π^+ Fitter Improvement

- Previously, momentum seed for π^+ fitter was $p_{\mu}/(M_{\mu}/M_{\pi^+})$
- Now perform momentum scan to find seed

More Hadron Hypotheses!

- **Proton** and **charged kaon** hypotheses implemented similarly to the π^+ hypothesis
 - Relying on hadronic interactions and differences in Čerenkov profiles
- Many useful possibilities for these hadron fitters:
 - Reconstruction of CC 2-track events for neutrino oscillation signal
 - 2-track CCQE (lepton + p), $CC\pi^+$ (lepton + π^+)
 - Background rejection and signal reconstruction for proton decay
 - More NC rejection for v_{μ} CCQE analyses:

June 22, 2013

π^0 Vertex Seeding Correction

- Special topology where the true π⁰ vertex is near the wall and decay is back-to-back
- The 1-ring fit pulls the vertex back to account for the backward ring with scattered light
- \succ Bad vertex seed \rightarrow bad π^0 fit
- Fix: Correct the vertex seed prior to π^0 fit

Summary

- WCSim output interfaced to fiTQun
 - Still some issues under investigation prior to use in detailed physics analyses
 - But once fixed, we expect good performance
- Several improvements and corrections to the core of fiTQun
- More hadron hypothesis
 - Which can be used to build more multi-ring hypothesis
- Several validation checks with SK control samples
- Heavy development ongoing in fitter improvements and analysis within SK

Acknowledgements (Team fiTQun)

• University of British Columbia

– Sophie Berkman, Hirohisa Tanaka, Shimpei Tobayama

• University of Colorado

– Stephen Coleman, Andrew Missert, Eric Zimmerman

- TRIUMF
 - Michael Wilking
- University of Winnipeg
 - Blair Jamieson

APPENDIX

PID/Number of Rings

- Distinguish between different event topologies by making a cut on the best-fit likelihood ratio:
 - e.g. One-ring e/μ separation by cutting on the likelihood ratio of 1R-e and 1R-μ hypotheses

• Separation of e/π^0 , μ/π^+ , and number of ring determination are done in a similar manner

Smoothing the Profiles

- v2: Cherenkov and time likelihood profiles were generated at coarsely binned discrete momentum values
- The fitter linearly interpolates the profiles in momentum, and was caught at local minima of the likelihood surface
- v3: Fit & smooth the the profiles in terms of momentum \downarrow

Momentum Bias & Resolution

*Muon particle gun <10GeV/c, FC, true FV, 1-ring

- Muon momentum bias and resolution get worse at very high momentum
- Approximations that are used for charge & time likelihood calculation get worse as particle track gets longer
- In order to fundamentally improve momentum resolution/bias, we need to develop a new method of approximating likelihood calculations
- v3: As a tentative solution, introduced ad-hoc bias correction, and put stronger constraint on total charge to improve resolution

Time Dependent PMT Gain Correction

- Correct PMT gain increase based on dark noise charge measurements
- Time dependence of reconstructed momentum is mostly removed
 - Decay-e data from stopping cosmic muons in SK shown

2R/1R Likelihood Ratio

NC π^+ and Proton Rejection

- Apply standard SK v_{μ} selection
- Apply π⁺ selection cut (left)
- Then apply proton selection cut (right)

$\pi^{\scriptscriptstyle +}$ and Proton Cut

- We can further reduce NC proton by cutting on the proton/μ fit likelihood ratio
- Reduction rate compared to standard APfit selection:

Cherenkov Profiles

Provide additional PID discrimination

π^0 Fit Performance in v3

1000

800

600

400

Old

(v2)

fqpi0mass[0] {fqpi0mass[0]<200.&&evis>100.}

htemp

18581

126.7

28.17

Entries

Mean

RMS

- The bump at low π⁰ mass has been removed
- All of these events have migrated to the correct π^0 mass

π^0 Cut in SK Atmospheric Data

• T2K π^0 cut rejection applied to atmospherics

APFIT 2-Ring π^0 Selection

June 22, 2013

POLfit/fiTQun comparison

	POLfit	fiTQun π^0 fit
# of fit parameters	3	12
- Vertex	fixed at I-ring vertex (0)	float (3)
- γ conversion length	fixed (0)	float, for both rings (2)
- γ direction: Ist/2nd	fixed/float (2)	float/float (4)
- γ energy: Ist/2nd	fixed/float (1)	float/float(2)
- Time information	Not used (0)	Used & fit (I)
Indirect light calculation	Rayleigh-like scattering No reflection	Based on template generated from MC w/ scattering & reflections

WCSim Generated Vertices

 For momentum reconstruction study, vertices generated within the ID

π^0 Fitter

- Also simulated π^0 particle gun at 2 momenta
- Reconstructed π^0 mass is also negatively biased
 - Probably related to previous issues observed

