Enhanced light collection with a wavelength shiftingtrap

P. Gumplinger, F. Nurozler (Undergraduate student), F. Retière

Motivations

- Baseline photon detection solution at Hyper-K
 - 20" PMT (same form factor as Hyper-K)
 - Possibly using Hybrid Photo-detector, i.e. APD rather than dynodes
 - 20% active (photo) coverage
 - PMT quantum efficiency not very well matched to Cerenkov light
- Can we do better or cheaper than that?
 - Smaller PMTs with light collectors
 - Lower cost
 - Lower dark noise
 - Better transit time spread

Wavelength shifter "Mexican hat" solution investigated for LBNE

Pros

- Up to 40% gain in light collection
- Does not require additional PMT
- Preserve prompt light
- Cons
 - Some light reemitted in water
 - may worsen position reconstruction
 - Worse position resolution
 - Delayed photo-electron from WLS

June 22, 2013

Trapping reemitted light

Trapping efficiency:

- ~30% with total internal reflection independently of number of bounces
- 98.5%^{nbounce}with mirrors
- Can combine both

Background technical information How interference filters work Also called dichroic filters/mirrors

Reflection and Transmission by Interference Filters

5

Simulation framework

• GEANT4 based

- Dichroic mirror simulations implemented by P. Gumplinger
 - Reflectance vs angle and wavelength
 - Not used yet because optimization is tricky
- GEANT4 gun = Cerenkov photons
 - Wavelength distribution follow Cerenkov spectrum
 - Uniform spatial distribution 1x1 m²
 - Normal incidence
- Detector simulations (not full HK simulations)
 - Vary geometry
 - Use BC482A (Saint Gobain wavelength shifter) absorption and emission spectrum
 - Only absorb blue (not UV). Could be improved with UV absorption

Light detection vs wavelength

June 22, 2013

7

HK default configuration

- 20" PMT every 100 cm (assumed)
- Will normalize everything to this configuration

 Ignore photo-detection efficiency variation with
 wavelength

Thin wavelength shifter

Solution investigated for LBNE
 Using longer plate

Thin wavelength shifter + mirrors

- Solution proposed last August
- Mirrors capture photons that escape WLS
 - Escape probability depend on number of bounces

Thick wavelength shifter

- Solution proposed in January 2013
- Thick wavelength shifter to minimize number of bounces
 - WLS shadow PMTs for large angle
 - Cerenkov photon go through mirror: filter out green photons

Thick box but thin WLS

- May not need thick wavelength shifter
 - Fill up box with water
 - Use WLS only to shift from blue/UV to green for trapping with dichroic mirror

Simulation example

Performance: photon collection

Configuration		# direct	# WLS	# WLS-ext
20" PMT	46cm (~20") Water	1*	0	0
12" PMT + 3cm WLS + side mirrors	100cm Wavelength shifter & Ball PMT 30cm (~12") Water	0.42	0.15	0.3
12" PMT + 3cm WLS + side & back mirrors + dichroic mirror	100cm Wavelength shifter E Water	0.42	0.42	0.84
12" PMT + 15cm WLS + side & back mirrors + dichroic mirror	Dichroic mirror WLS or water 100cm Wavelength shifter Ball PMT 30cm (~12") Water	0.38	1.7	~3
12" PMT + 5mm WLS + side & back mirrors + dichroic mirror	Dichroic mirror 100cm Wavelength shifter Water Water	0.38	1.2	2.4

Dichroic mirror tuning with wavelength and angle

Overall performance consideration

	20" PMT	12"PMT + thick WLS	12" PMT + thick WLS + extended WLS
Normalized PDE x photo-coverage (using HQE PDE)	1	1.8	3
Granularity	25 cm disk	1x1 m2	1x1m2
1D position resolution	11.5cm	27.2cm	~30cm
Single photon timing resolution	3.5ns (transit time spread)	12.5ns	12.85ns

 Is the gain in photo-coverage worth the lost timing and position resolution?

– Can we find faster wavelength shifter?

Build prototype by end of the year

- Short of money
 - Do with what we have
 - 8" SNO PMT on hand
 - Could certainly use a 12" PMT
- Test in H.Tanaka PMT tester setup

- Dichroic mirror
 - Investigate optimum configuration
 - Simulate thin film
 - Investigate large area manufacturing
 - Flat panel display technology?
 - Mock-up dichroic mirror using perforated broadband mirrror if necessary
- Wavelength shifter
 - Procure UV/blue→green from
 Eljen and Saint-Gobain

Summary and outlook

- The combination of thick wavelength shifter and dichroic mirror is promising
 - As much as factor of 3 photon gain
 - Need UV/Blue wavelength shifter for optimum results
- Next steps
 - Investigate pros and cons of enhanced photon collection vs worth timing/position resolution
 - Investigate π^0 reconstruction with fiTQun + Wcsim
 - Good combination of low and high energy reconstruction
 - Investigate different configurations.
 - A. Konaka suggestion: ½ 20" PMT (good timing for high energy) + ½ photon trap (for low energy)
 - Build a full scale prototype
 - Secure R&D money

Thank you

My best guess for the optimum configuration

- 12" PMT with half ball photo-cathode coverage
- Thin WLS ~100x100x0.5 cm³ sheet with hole in center
 - Optimize for UV-blue absorption and low green light attenuation
 - If possible use water-like index of refraction material
- Confine WLS photons with frame in water
 - Dichroic mirror on tank side & Enhanced Specular Reflector on outside
 - Exact shape to be optimized

Or with 20" PMT

Next step 3: build a prototype

• Small scale to test light collection

- Full scale prototype
 - Straightforward to machine a slab of WLS and couple it to a PMT
 - Can we get large enough mirror?
 - How to test it?
 - ... This may not happen until next year

