Status Report

February 22nd, 2019

Haruya Morikawa Tokyo Institute of Technology

- $r = 0 \Leftrightarrow x = y = 0$
- Total Transit Time
 histograms within r
 → calculate TTS
 - each TT hist. is scaled (10,000/entries)

Transit Time (-1200 HV 20181219 run=638)

- Transit Time vs. charge
 - decreasing with charge
- charge value is equal to $Q_0 + (n-1)(Q_1 - Q_0)$
 - *n*: # of photoelectron
 - Q_1 : peak of 1pe peak (p6)
 - Q_0 : peak of pedestal (p0)
 - its error bar is $0.5 \sigma_1$
 - σ_1 : S.D. of 1 pe peak (p5)
- TT error bars are brought from the 2 TT values when calculating TTS (FWHM)
 - when TTS = $t_1 t_0$,
 - upper error is $t_{\text{mean}} t_1$
 - lower error is $t_1 t_{\rm mean}$
 - t_{mean} is mean of EMG ($\mu + 1/\lambda$) 3

- TTS vs. charge
 - fit: $p0 \times charge^p1 + p2$
- charge value is equal to $Q_0 + (n-1)(Q_1 Q_0)$
- TTS error bar

• =
$$\sqrt{\Delta \sigma^2 + \Delta \lambda^2/4}$$

- calculate from $\sqrt{\sigma^2 + 1/\lambda^2}$ (standard deviation of EMG)
- though maybe not correct error
- error > 0.5 ns -> set to 0 ns

x [mm]

-ž0

−3ĭ0

-ĭ0

- What kind of algorithm should be used when we determine the center of PMT (r=0)?
- In this slide just set r=0 as x=y=0.

What causes outlier?

What causes outlier?

- p1 is sigma of pedestal
 - -1200 V has the largest sigma0
 - -> the cause should be any abnormality in pedestal
- bump appeared again?