

"Prospects of Neutrino Physics" Kavli IPMU, Kashiwa, Japan April 8, 2019

# Prospects in Neutrino Experiments

Takaaki Kajita

Institute for Cosmic Ray Research and Kavli IPMU, The Univ. of Tokyo

# Outline

- Introduction: Present Status
- Neutrino Mass Ordering (short)
- CP violation
- Double beta decay
- Appendix 1: Proton decay
- Appendix 2: IUPAP Neutrino Panel
- Summary

# Introduction: Present status

### Some of the new results at Neutrino 2018

#### Super-K atmospheric (Y. Hayato)

T2K (M. Wascko)

#### NOvA (M. Sanchez)



Already some interesting indications:

→ NO favored by these 3 experiments at ~(1 ~ 2) sigma level each. → These experiments give some favored  $\delta_{CP}$  region(s).

#### Global fit (example)



## Agenda for the future neutrino measurements



# Neutrino Mass Ordering

## Future experiments that will tell us the neutrino masses ordering

Very good to have many projects for the MO measurements. We would like to be convinced the neutrino mass ordering by consistent results from several different technologies/methods with > 3  $\sigma$  CL from each exp.



CP Violation

- ✓ We would like to confirm that CP is violated in the neutrino sector.
- ✓ CP violation in the neutrino sector might be the key to understand the baryon asymmetry of the Universe (Leptogenesis).

Next generation neutrino CPV experiments

✓ We would like to observe if oscillation of neutrinos and those of antineutrinos are different.



#### Sensitivities

#### <u>DUNE</u>





# Complementarity

|                     | DUNE                                                                                                      | Hyper-K                                                                                                 |
|---------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Baseline            | <ul> <li>1300km</li> <li>→ Large matter effect</li> <li>(Good for Mass Ordering determination)</li> </ul> | 295km<br>→ Small matter effect<br>(Smaller effect of matter<br>density uncertainty in δ <sub>CP</sub> ) |
| Beam energy         | ~ Multi-GeV                                                                                               | ~ Sub-GeV                                                                                               |
| Detector technology | Liq. Ar TPC                                                                                               | Water Cherenkov                                                                                         |

 We would like to be convinced the CP violation by the consistent results from these 2 experiments with very different systematics.

We hope that these 2 experiments will carry out the experiments in a similar timeline.

### Status of Hyper-K

- ✓ Hyper-K has been selected as one of the 7 large scientific projects in the Roadmap of the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) in 2017.
- ✓ Since then, we have been discussing intensively with MEXT.
- ✓ In the FY2019 Japanese budget (April 2019 March 2020), "funding for feasibility study" for Hyper-K is included. This budget is equivalent to "seed funding" in some other countries. This funding is usually for 1 year (or 2 years).
- ✓ The President of the Univ. of Tokyo, in recognition of both the project's importance and value both nationally and internationally, pledged to ensure construction of the Hyper-Kamiokande detector commences in April 2020.

#### Hyper-K construction will begin in April 2020! (The construction will take 7-8 years!) You are most welcome to join Hyper-K!

After the initial CP results...



If the suggested CP phase by T2K, Super-K, and NOvA (IO) (around  $3/2\pi$  or  $-\pi/2$ ) is close to the real value, the determination of the CP phase angle will be rather poor. Should we better measure the phase angle? We would like to get inputs from theorists. Double beta decay

✓We would like to know if neutrinos are Majorana particles.

- Key to understand the neutrino mass mechanism.
- Maybe very important step toward the understanding of the baryon asymmetry of the Universe (Leptogenesis).

# Results presented at Neutrino 2018



## What next ?

#### (A. Giuliani, nu2018)

| source = detector NOW                   |                               |                                       | - MID-TERM                | LONG-TERM              | $\mathbf{m}_{\beta\beta} =  U_{e1} ^2 M_1 + e^{i\alpha_1}  U_{e2} ^2 M_2 + e^{i\alpha_2}  U_{e3} ^2 M_3$ |                                                                                                               |
|-----------------------------------------|-------------------------------|---------------------------------------|---------------------------|------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| High $\Delta E$ and $\varepsilon$ Scala |                               | Xe-based<br>TPC                       | EXO-200                   |                        | nEXO                                                                                                     | $1/\tau = G(Q,Z) g_A^4  M_{nucl} ^2 m_{\beta\beta}^2$                                                         |
|                                         | Fluid<br>embedded<br>source   |                                       | NEXT-10                   | NEXT-100<br>PandaX-III | NEXT-2.0<br>PandaX-III 1t                                                                                | E 10 <sup>-1</sup><br>= 50 meV<br>Inverted Ordering (IO)<br>= 15 meV                                          |
|                                         |                               | Liquid<br>scintillator<br>as a matrix | KamLAND-Zen 800           |                        | KamLAND2-Zen                                                                                             | 10 <sup>-2</sup>                                                                                              |
|                                         |                               |                                       | SNO+ phas                 | se I                   | SNO+ phase II                                                                                            | 10 <sup>-3</sup>                                                                                              |
|                                         | Crystal<br>embedded<br>source | Germanium<br>diodes                   | GERDA-II                  | LEGEND 200             | LEGEND 1000                                                                                              | $10^{-4}$ Phys. Rev. D90, 033005 (2014)<br>$10^{-4}$ $10^{-3}$ $10^{-2}$ $10^{-1}$ $1$<br>$M_{lightest} [eV]$ |
|                                         |                               |                                       | MJD                       |                        |                                                                                                          | Very exciting that the                                                                                        |
|                                         |                               | Bolometers                            | AMoRE pilot, I            | AMoRE II               |                                                                                                          | near future                                                                                                   |
|                                         |                               |                                       | CUORE<br>CUPID-0, CUPID-N | Ло                     | CUPID                                                                                                    | experiments begin to explore the IO region!                                                                   |

## Toward NO



If we want to cover most of NO, we need;

- ✓ ~100 ton class detector,
- ✓ with reduced background (BG rate must be reduced by 1/mass•time or better),
   ✓ ....

Because of the importance of  $0\nu\beta\beta$ , I really hope that the global neutrino community work together, and find the best way to observe them.

Appendix 1: Proton decay

### Motivation

- ✓ It is clear that proton decay is very important for understanding of physics at the very high energy scale (GUTs).
   ✓ Neutrino masses/mixings and proton decays might be related to the physics at very high energy scale.
- ✓ We are in an extremely interesting era. New large neutrino detectors (JUNO, DUNE and Hyper-K) will (or are planed to) begin the operation in the near future. These detectors are also very good proton decay detectors.
- ✓ Therefore, we should not forget the proton decay searches in the next generation "neutrino experiments".

#### Sensitivities

DUNE arXiv:1601.05471 HK arXiv:1805.04163v1 JUNO arXiv:1507.05613



 $3\sigma$  discovery potential, if  $\tau_p < 10^{35}$  years ( $e\pi^0$ ) or  $< 5*10^{34}$  years ( $vk^+$ )

(Lines for DUNE and JUNO experiment have been generated based on numbers in the literature.)

23

# Key plots for confirming $p \rightarrow e \pi^0$

#### (Hyper-K, arXiv:1805.04163v1)



In order to reach 10<sup>35</sup> years, "free" proton decay (from Hydrogen) is very important!

# Key plots for confirming $p \rightarrow e \pi^0$

#### $p \rightarrow e^+ \pi^0$ Invariant Mass

 $\tau_{\text{proton}}$ =1.7×10<sup>34</sup>years (SK limit)



# Key plots for confirming $p \rightarrow v K^+$



<u>DUNE</u>

JHEP04(2007)041

We want to confirm that the Kaon momentum is consistent with proton decay.

<u>JUNO</u>





# Appendix 2: IUPAP Neutrino Panel

# An announcement: IUPAP neutrino panel

IUPAP has established the Neutrino Panel with the mandate: "to promote international cooperation in the development of an experimental program to study the properties of neutrinos and to promote international collaboration in the development of future neutrino experiments to establish the properties of neutrinos."

| M. Sajjad Athar                | AMU, Aligarh, India                           |               |  |  |
|--------------------------------|-----------------------------------------------|---------------|--|--|
| Steve Barwick                  | UCI Physics and Astronomy                     |               |  |  |
| Thomas Brunner                 | McGill University                             |               |  |  |
| Jun Cao                        | IHEP, Beijing                                 |               |  |  |
| Mikhail Danilov                | Lebedev Physical Inst., Russian Acad. of Sci. |               |  |  |
| Renata Zukanovich Funchal      | University of São Paulo                       |               |  |  |
| Kunio Inoue                    | Tohoku University                             |               |  |  |
| Takaaki Kajita ( <b>+)</b>     | University of Tokyo                           |               |  |  |
| Marek Kowalski                 | DESY                                          |               |  |  |
| Manfred Lindner (+)            | Max Planck Institute for Nuclear Phys.        |               |  |  |
| Ken Long                       | Imperial College, London                      |               |  |  |
| Nathalie Palanque-Delabrouille | CEA                                           |               |  |  |
| Heidi Schellman                | Oregon State University                       |               |  |  |
| Kate Scholberg                 | Duke University                               |               |  |  |
| Seon-Hee Seo                   | IBS, Center for Underground Physics           |               |  |  |
| Nigel Smith ( <b>+)</b>        | SNOLAB                                        |               |  |  |
| Walter Winter                  | DESY-Zeuthen                                  | (1) Co chairs |  |  |
| Sam Zeller                     | Fermilab                                      | (+) Co-chairs |  |  |
|                                |                                               |               |  |  |

# *Objectives (draft): IUPAP neutrino panel*

- Through consultation with the broad neutrino-physics community, funding agency and laboratory management and other stakeholders, the Panel will carry out a review of:
  - (a) The present status of the global neutrino physics programme and the development that can be expected on a 5 to 10-year timescale through a science driven white paper;
  - (b) The measurements and R&D (including software development) that are required for the near-term (<10-year) and medium- to long-term (10 25-year) programme to fulfil their potential.
- The Panel will identify opportunities within neutrino physics, mutual benefits
  of global connections within neutrino physics and other fields, as well as the
  synergies of an international programme.
- The Panel will provide written updates to the C11 Commission at key milestones in its programme and a final report to the IUPAP General Council by October 2020.

- In the last 2 decades, neutrino physics had a great progress.
- However, many important questions are still unanswered.
- We have to continue work hard.