Results from T2K and Prospects with T2K-II

2019/4/9, Prospects of Neutrino Physics K.Sakashita (KEK/J-PARC) for T2K collaboration

Contents

- · Introduction
- · T2K latest results
- · T2K-II prospects
- · Summary

T2K(Tokai-to-Kamioka) experiment

Long base-line neutrino oscillation experiment

some of T2K results so far :

 \bigcirc Discovery of ν_{e} appearance in 2013

Phys.Rev.Lett. 107, 041801 (2011) Phys.Rev.Lett. 112, 061802 (2014)

Search for CP violation in neutrino oscillation

Phys.Rev.Lett. 121, 171802 (2018)

T2K collaboration

International collaboration (as of 2019 Jan. : ~500 members, 68 institutes, 12 countries)

Recently, CERN neutrino group has joined !

Physics motivation

After $\nu_{\mu} \rightarrow \nu_{e}$ discovery by T2K, and precise θ_{13} meas. by Reactor experiments

- CP violation parameter δ_{CP}
- Is θ_{23} maximal?
- mass ordering

hint for the origin of matter dominate universe

[Nucl. Phys. B774 (2007) 1 etc.]

T2K neutrino beam

- Accelerator-based ν beam
- ν energy is narrow with off-axis method L = 295km \rightarrow oscillation peak at 0.6GeV
- ν / $\overline{\nu}$ can be switched by flipping horn polarity

- <1% of intrinsic ν_e at peak energy
- ~5% of wrong sign component in $\overline{\nu}$ beam mode

Near Detectors

Far Detector: SK-IV

<u>)</u>]

Constraint flux, xsec model with ND280 data

top : ν -mode FDG2 CC-0 π bottom : $\overline{\nu}$ -mode FGD2 CC-1track

13

Systematic uncertainty for # of FD events

FHC : ν -mode beam, RHC : $\overline{\nu}$ -mode beam

	Single ring μ -like		Single ring e-like			
Error Source	FHC	RHC	FHC	RHC	FHC CC1 π	FHC/RHC
SK Detector	2.40	2.01	2.83	3.80	13.15	1.47
Final state, Secondary int.	2.21	1.98	3.00	2.31	11.43	1.57
Flux+Xsec after ND constraint	3.27	2.94	3.24	3.10	4.09	2.67
Binding energy(E _b)	2.38	1.72	7.13	3.66	2.95	3.62
$\sigma(\nu_{\rm e})/\sigma(\nu_{\mu})$	0.00	0.00	2.63	1.46	2.61	3.03
NC1 r	0.00	0.00	1.09	2.60	0.33	1.50
NC Other	0.25	0.25	0.15	0.33	0.99	0.18
Osc.	0.03	0.03	2.69	2.49	2.63	0.77
Total	5.12	4.45	9.19	7.57	18.51	6.03

- Error on FHC/RHC ratio which contributes to CPV study is $\sim 6\%_{14}$

(%)

Accumulated POT and beam power

Accumulated 15.1x10²⁰ POT for neutrino mode and 16.5 x 10²⁰ POT for ant-neutrino mode (total POT corresponds to 40% of the T2K approved POT)

FD observed event

 ν -mode :14.9x10²⁰ POT , $\overline{\nu}$ -mode : 16.3x10²⁰ POT

$\overline{\nu}_e$ appearance search

15 of CCQE e-like events observed in $\overline{\nu}$ -mode data

$\overline{\nu}_e$ appearance search

15 of CCQE e-like events observed in $\overline{\nu}$ -mode data

Expectation

9.4 events w/o $\overline{\nu}_e$ appearance 17.2 events w/ $\overline{\nu}_e$ appearance

No $\overline{\nu}_{e}$ appearance hypothesis is excluded by 2.25 σ significance w/ rate+shape information

ν_e vs $\overline{\nu}_e$ appearance

Comparison of # of ν_e and $\overline{\nu}_e$ appearance candidates

ν_{μ} disappearance

sin²θ₂₃<0.5 sin²θ₂₃>0.5

0.184

0.021

0.205

0.705

0.090

0.795

Sum

0.889

0.111

1

posterior probability

Normal

Inverted

Sum

• Contours for ν_{μ} disappearance parameters $\sin^2 \theta_{23}$, Δm^{2}_{32} (w/ reactor constraint on $\sin^2 \theta_{13}$)

- Consistent with maximal mixing
- Data prefers normal mass ordering

$\delta_{\rm CP} \, {\rm vs} \, {\rm sin}^2 \, \theta_{13}$

- Contours for δ_{CP} and sin²(θ_{13}) w/ all the data samples
- Top plot shows only T2K allowed region

 Bottom plot shows with reactor constraints on sin²(θ₁₃) (PDG2018)

Constraints on δ_{CP}

ν -mode :14.9x10²⁰ POT , $\overline{\nu}$ -mode : 16.3x10²⁰ POT

2σ C.L. interval Normal hierarchy [-2.966, -0.628] rad. Inverted hierarchy [-1.799, -1.979] rad.

CP conserving values ($\delta = 0, \pm \pi$) are excluded with 2σ level Need more data for confirmation of CPV ²²

Prospects of analysis improvement

Systematic error improvements

•

- Flux error will be reduced to ~6% by using replica target data of NA61/SHINE hadron production measurement
- Neutrino interaction modeling will be upgraded based on latest experimental results
- T2K+NOvA, T2K+SK joint analysis are under discussion between collaborators
 - Aim to do T2K+NOvA analysis around 2021

T2K-II

We plan to accumulate more data up to 2x10²² POT by 2027 (J-PARC E65 [T2K-II])

J-PARC PAC stage-1 status

T2K-II Target POT (Protons-On-Target)

- Beam power upgrade to 1.3MW
- Near detector upgrade to reduce the total systematic error down to ~4%

Beam power upgrade plan

Near Detector upgrade

Replacing part of ND280 with new detectors to enhance capability

Super-FGD arXiv:1707.01785

- TDR submitted to PAC and reviewed (J-PARC & CERN)
- Strong collaboration of experts from Europe (incl. CERN), Japan and USA
- will be approved as CERN NP06

Aiming installation in 2021

- Atmospheric pressure TPC using the same gas mixture as the present TPC
- Main difference with the existing TPC: thin field cage, resistive Micromegas
- · Large overlap with the TPC group
- Benefiting from ILC TPC developments and RD51

(depends on true value) 28

Summary

- Recently, stable operation with 485kW beam power
- T2K collected 3.16 x 10²¹ POT up to now and it indicates a large CPV in neutrino oscillation
- We plan to upgrade beam power and near detector and collect more data up to 20 x 10²¹ POT [T2K-II]
- $_{\bullet}$ We aim to detect neutrino CPV with 3 σ sensitivity at T2K-II